Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 9

Question Number 45211    Answers: 1   Comments: 0

Let A= (((1 3)),((2 5)) ). Find an expression for the enteries of A^n .

LetA=(1325).FindanexpressionfortheenteriesofAn.

Question Number 44737    Answers: 0   Comments: 0

A and B are two non−singular matrices such that A^6 =I and AB^2 =BA(B≠I). Then value of K for which B^K =I.

AandBaretwononsingularmatricessuchthatA6=IandAB2=BA(BI).ThenvalueofKforwhichBK=I.

Question Number 44708    Answers: 1   Comments: 0

Let A,B be two n×n matrices such that A+B=AB then prove : AB=BA ?

LetA,Bbetwon×nmatricessuchthatA+B=ABthenprove:AB=BA?

Question Number 42988    Answers: 0   Comments: 0

reduce this matrix [(2,3,4,1),(1,7,2,3),((−1),4,2,0),(0,1,1,0) ]

reducethismatrix[2341172314200110]

Question Number 42639    Answers: 0   Comments: 0

Find LCM [((13)/2),(2/(13)),(4/7)] [((57)),(0) ]×

FindLCM[132,213,47][570]×

Question Number 44610    Answers: 0   Comments: 1

Let A be 2×3 matrix , whereas B be 3×2 matrix. If determinant(AB)=4, then the value of determinant (BA) ?

LetAbe2×3matrix,whereasBbe3×2matrix.Ifdeterminant(AB)=4,thenthevalueofdeterminant(BA)?

Question Number 41447    Answers: 1   Comments: 0

Question Number 41392    Answers: 0   Comments: 1

If both A− (I/2) and A+(I/2) are orthogonal matrices, then prove that A^2 = −(3/4) I.

IfbothAI2andA+I2areorthogonalmatrices,thenprovethatA2=34I.

Question Number 41332    Answers: 1   Comments: 3

In Matrices, Is (A^(−1) )B = B(A^(−1) ) ?

InMatrices,Is(A1)B=B(A1)?

Question Number 41321    Answers: 1   Comments: 1

If A is a square matrix of order 3, then ∣(A−A^T )^(2011) ∣ = ?

IfAisasquarematrixoforder3,then(AAT)2011=?

Question Number 40910    Answers: 1   Comments: 0

Question Number 40418    Answers: 2   Comments: 1

Question Number 40417    Answers: 0   Comments: 0

Question Number 40297    Answers: 0   Comments: 0

Question Number 39612    Answers: 1   Comments: 4

Question Number 38960    Answers: 1   Comments: 0

Question Number 38679    Answers: 3   Comments: 0

Question Number 38282    Answers: 1   Comments: 0

Question Number 35319    Answers: 2   Comments: 0

Question Number 34355    Answers: 2   Comments: 1

Question Number 32878    Answers: 1   Comments: 0

A= [(α,1,1,1),(1,α,1,1),(1,1,β,1),(1,1,1,β) ]with α^2 ≠1≠β^2 det(A)=....???

A=[α1111α1111β1111β]withα21β2det(A)=....???

Question Number 32877    Answers: 1   Comments: 0

[(2,1),(0,2) ]^(2018) =.....???

[2102]2018=.....???

Question Number 31785    Answers: 1   Comments: 0

A= [((1 5)),((6 7)) ]find A^k

A=[1567]findAk

Question Number 30783    Answers: 1   Comments: 0

Prove that determinant ((3,(a+b+c),(a^2 +b^2 +c^2 )),((a+b+c),(a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 )),((a^2 +b^2 +c^2 ),(a^3 +b^3 +c^3 ),(a^4 +b^4 +c^4 ))) =(a−b)^2 (b−c)^2 (c−a)^2

Provethat|3a+b+ca2+b2+c2a+b+ca2+b2+c2a3+b3+c3a2+b2+c2a3+b3+c3a4+b4+c4|=(ab)2(bc)2(ca)2

Question Number 30191    Answers: 0   Comments: 0

let give A = ((( 1 1 0)),((0 1 1)) ) (1 0 1 ) calculate A^n and e^(−A) .

letgiveA=(110011)(101)calculateAnandeA.

Question Number 29032    Answers: 0   Comments: 0

let give A = (((0 1 0)),((0 0 1)) ) (1 0 0 1) find A^3 2) find e^(tA) .

letgiveA=(010001)(1001)findA32)findetA.

  Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com