All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 18749 by Tinkutara last updated on 29/Jul/17
Motionintwodimensions,inaplanecanbestudiedbyexpressingposition,velocityandaccelerationasvectorsinCartesianco−ordinatesA→=Axi∧+Ayj∧wherei∧andj∧areunitvectoralongxandydirections,respectivelyandAxandAyarecorrespondingcomponentsofA→(Figure).Motioncanalsobestudiedbyexpressingvectorsincircularpolarco−ordinatesasA→=Arr∧+Aθθ∧wherer∧=r→r=cosθi∧+sinθj∧andθ∧=−sinθi∧+cosθj∧areunitvectorsalongdirectioninwhich′r′and′θ′areincreasing.(a)Expressi∧andj∧intermsofr∧andθ∧(b)Showthatbothr∧andθ∧areunitvectorsandareperpendiculartoeachother.(c)Showthatddt(r∧)=ωθ∧whereω=dθdtandddt(θ∧)=−ωr∧(d)Foraparticlemovingalongaspiralgivenbyr→=αθr∧,whereα=1(unit),finddimensionsof′α′.(e)Findvelocityandaccelerationinpolarvectorrepresentationforparticlemovingalongspiraldescribedin(d)above.
Commented by Tinkutara last updated on 29/Jul/17
Answered by ajfour last updated on 29/Jul/17
(a)Leti^=λr^+μθ^i^=λ(cosθi^+sinθj^)+μ(−sinθi^+cosθj^)⇒[λcosθ−μsinθ=1]×cosθand[λsinθ+μcosθ=0]×sinθAdding,weobtainλ=cosθ;μ=−sinθSo,i^=(cosθ)r^−(sinθ)θ^Letj^=ρr^+ϵθ^orj^=ρ(cosθi^+sinθj^)+ϵ(−sinθi^+cosθj^)⇒[ρcosθ−ϵsinθ=0]×cosθ,and[ρsinθ+ϵcosθ=1]×sinθAddingweget,ρ=sinθ;ϵ=cosθHencej^=(sinθ)r^+(cosθ)θ^............................(b)∣r^∣=cos2θ+sin2θ=1henceaunitvector∣θ^∣=(−sinθ)2+(cosθ)2=1aunitvector.r^.θ^=(cosθi^+sinθj^).(−sinθi^+cosθj^)=−cosθsinθ+sinθcosθ=0⇒r^andθ^are⊥toeachother...............................(c)dr^dt=ddt(cosθi^+sinθj^)=dθdt(−sinθi^+cosθj^)⇒dr^dt=ωθ^.dθ^dt=ddt(−sinθi^+cosθj^)=dθdt(−cosθi^−sinθj^)⇒dθ^dt=−ωr^...............................(d)r→=αθr^θisdimensionless,soisunitvectorr^;so[α]=[∣r^∣]=M0L1T0...............................(e)v→=dr→dt=αddt(θr^)=α(dθdtr^+θdr^dt)=αω(r^+θθ^).a→=dv→dt=αddt(ωr^+ωθθ^)=α(dωdtr^+ωdr^dt)+α(θdωdtθ^+ωdθdtθ^+ωθdθ^dt)=α(dωdtr^+ω(ωθ^))+α[θdωdtθ^+ωdθdtθ^+ωθ(−ωr^)]a→=α{(dωdt−ω2θ)r^+(2ω2+θdωdt)θ^}.
ThankyouverymuchajfourSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com