Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 19

Question Number 27888    Answers: 1   Comments: 4

a and b are distinct primes and x,y∈{0,1,2,...}. What is the number of divisors common to the numbers (a^x b^y ) and (a^y b^x )?

aandbaredistinctprimesandx,y{0,1,2,...}.Whatisthenumberofdivisorscommontothenumbers(axby)and(aybx)?

Question Number 27816    Answers: 1   Comments: 1

If N is perfect nth power, prove that n ∣ (d(N)−1) [Where d(N) denotes number of divisors of N] Also show by an example that its vice versa is not necessarily correct.

IfNisperfectnthpower,provethatn(d(N)1)[Whered(N)denotesnumberofdivisorsofN]Alsoshowbyanexamplethatitsviceversaisnotnecessarilycorrect.

Question Number 27767    Answers: 1   Comments: 0

If the number of divisors of a number is odd,prove that the number is perfect square and vice versa.

Ifthenumberofdivisorsofanumberisodd,provethatthenumberisperfectsquareandviceversa.

Question Number 27404    Answers: 1   Comments: 0

(1).the mean of 14.9.22.14.22.18

(1).themeanof14.9.22.14.22.18

Question Number 27266    Answers: 1   Comments: 0

2.8.4.7.8.6.16−what next number

2.8.4.7.8.6.16whatnextnumber

Question Number 27057    Answers: 1   Comments: 3

Try to write new year number (2018)as: (i) Sum of two primes (ii)Sum of three primes (iii)Sum of primes (iv)Sum of as many distinct primes as possible.

Trytowritenewyearnumber(2018)as:(i)Sumoftwoprimes(ii)Sumofthreeprimes(iii)Sumofprimes(iv)Sumofasmanydistinctprimesaspossible.

Question Number 26508    Answers: 0   Comments: 0

A={(m/n)+((8n)/m) : m, n ∈ N}, N= Natural numbers find sup(A) and inf(A)

A={mn+8nm:m,nN},N=Naturalnumbersfindsup(A)andinf(A)

Question Number 26410    Answers: 1   Comments: 0

If GCD(a,b) = 1 and GCD(c, d) = 1 a ≠ b ≠ c ≠ d ≠ 1, a < b, c < d is it possible that (a/b) + (c/d) is an integer number?

IfGCD(a,b)=1andGCD(c,d)=1abcd1,a<b,c<disitpossiblethatab+cdisanintegernumber?

Question Number 25152    Answers: 2   Comments: 1

What is the real part and imaginary part of the complex number: z = (1 + i)^i

Whatistherealpartandimaginarypartofthecomplexnumber:z=(1+i)i

Question Number 24944    Answers: 0   Comments: 4

Question Number 24324    Answers: 0   Comments: 2

Find the minimum possible least common multiple (lcm) of twenty (not necessarily distinct) natural numbers whose sum is 801.

Findtheminimumpossibleleastcommonmultiple(lcm)oftwenty(notnecessarilydistinct)naturalnumberswhosesumis801.

Question Number 23612    Answers: 0   Comments: 2

Find the last 2 digits from 20^(17) + 17^(20)

Findthelast2digitsfrom2017+1720

Question Number 23269    Answers: 1   Comments: 0

Prove that 3k+2 is not perfect square for all k∈{0,1,2,3,...}.

Provethat3k+2isnotperfectsquareforallk{0,1,2,3,...}.

Question Number 23105    Answers: 0   Comments: 4

(∣m^2 −n^2 ∣,2mn,m^2 +n^2 ) is pythagorean triplet for all m,n∈N. This can be proved easily.Is the vice versa of the statement is also true? I-E If for a,b,c∈N ,a^2 +b^2 =c^2 then there exist m,n∈N such that m^2 +n^2 =c and {a,b}={∣m^2 −n^2 ∣,2mn}

(m2n2,2mn,m2+n2)ispythagoreantripletforallm,nN.Thiscanbeprovedeasily.Istheviceversaofthestatementisalsotrue?IEIffora,b,cN,a2+b2=c2thenthereexistm,nNsuchthatm2+n2=cand{a,b}={m2n2,2mn}

Question Number 22635    Answers: 1   Comments: 0

For each positive integer n, define a_n =20+n^2 ,and d_n =gcd(a_n ,a_(n+2) ). Find the set of all values that are taken by d_n .

Foreachpositiveintegern,definean=20+n2,anddn=gcd(an,an+2).Findthesetofallvaluesthataretakenbydn.

Question Number 22625    Answers: 0   Comments: 2

For each positive integer n define a_n =30+n^2 ,and d_n =gcd(a_n ,a_(n+1) ). Find the set of all values that are taken by d_n and show by examples that each of these values are attained.

Foreachpositiveintegerndefinean=30+n2,anddn=gcd(an,an+1).Findthesetofallvaluesthataretakenbydnandshowbyexamplesthateachofthesevaluesareattained.

Question Number 22372    Answers: 1   Comments: 4

Question Number 26917    Answers: 1   Comments: 2

Given a^2 + b^2 = 1 and c^2 + d^2 = 1 The minimum value of ac + bd − 2 is ...

Givena2+b2=1andc2+d2=1Theminimumvalueofac+bd2is...

Question Number 22080    Answers: 0   Comments: 1

Given any positive integer n show that there are two positive rational numbers a and b, a ≠ b, which are not integers and which are such that a − b, a^2 − b^2 , a^3 − b^3 , ....., a^n − b^n are all integers.

Givenanypositiveintegernshowthattherearetwopositiverationalnumbersaandb,ab,whicharenotintegersandwhicharesuchthatab,a2b2,a3b3,.....,anbnareallintegers.

Question Number 21994    Answers: 0   Comments: 1

Suppose N is an n-digit positive integer such that (a) all the n-digits are distinct; and (b) the sum of any three consecutive digits is divisible by 5. Prove that n is at most 6. Further, show that starting with any digit one can find a six-digit number with these properties.

SupposeNisanndigitpositiveintegersuchthat(a)allthendigitsaredistinct;and(b)thesumofanythreeconsecutivedigitsisdivisibleby5.Provethatnisatmost6.Further,showthatstartingwithanydigitonecanfindasixdigitnumberwiththeseproperties.

Question Number 21962    Answers: 0   Comments: 2

Let A be a set of 16 positive integers with the property that the product of any two distinct numbers of A will not exceed 1994. Show that there are two numbers a and b in A which are not relatively prime.

LetAbeasetof16positiveintegerswiththepropertythattheproductofanytwodistinctnumbersofAwillnotexceed1994.ShowthattherearetwonumbersaandbinAwhicharenotrelativelyprime.

Question Number 21756    Answers: 0   Comments: 0

Prove that the product for all nth roots of unity is equal to zero, except n=1. Note: U_n ={e^(2kπi/n) ∣ k∈{1, 2, ..., n}} x^n =1

Provethattheproductforallnthrootsofunityisequaltozero,exceptn=1.Note:Un={e2kπi/nk{1,2,...,n}}xn=1

Question Number 21784    Answers: 0   Comments: 0

Call a positive integer n good if there are n integers, positive or negative, and not necessarily distinct, such that their sum and product are both equal to n (e.g. 8 is good since 8=4∙2∙1∙1∙1∙1(−1)(−1)=4+2+1+1+1 +1+(−1)+(−1)). Show that integers of the form 4k + 1 (k ≥ 0) and 4l (l ≥ 2) are good.

Callapositiveintegerngoodiftherearenintegers,positiveornegative,andnotnecessarilydistinct,suchthattheirsumandproductarebothequalton(e.g.8isgoodsince8=421111(1)(1)=4+2+1+1+1+1+(1)+(1)).Showthatintegersoftheform4k+1(k0)and4l(l2)aregood.

Question Number 21781    Answers: 2   Comments: 0

Which is greater 10^(11) or 11^(10) ?

Whichisgreater1011or1110?

Question Number 21682    Answers: 1   Comments: 0

Prove that the ten′s digit of any power of 3 is even. [e.g. the ten′s digit of 3^6 = 729 is 2].

Provethatthetensdigitofanypowerof3iseven.[e.g.thetensdigitof36=729is2].

Question Number 21573    Answers: 0   Comments: 0

Prove that 1 < (1/(1001)) + (1/(1002)) + (1/(1003)) + ... + (1/(3001)) < 1(1/3).

Provethat1<11001+11002+11003+...+13001<113.

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com