Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 25

Question Number 2842    Answers: 0   Comments: 0

Prove that π=3.14... is irrational.

Provethatπ=3.14...isirrational.

Question Number 2820    Answers: 3   Comments: 11

We have the idea of Phythagorian triples as solutions (x,y,z) to the equation x^2 +y^2 =z^2 where x,y,z∈Z^+ . How frequently do solutions (x,y,z,t) to the equation x^2 +y^2 +z^2 =t^2 arise for x,y,z,t being integers between 1 and 100 inclusively? What solutions exist for t=12 and x,y,z∈Z^+ ?

WehavetheideaofPhythagoriantriplesassolutions(x,y,z)totheequationx2+y2=z2wherex,y,zZ+.Howfrequentlydosolutions(x,y,z,t)totheequationx2+y2+z2=t2ariseforx,y,z,tbeingintegersbetween1and100inclusively?Whatsolutionsexistfort=12andx,y,zZ+?

Question Number 2815    Answers: 1   Comments: 3

η(s)=Σ_(n=1) ^∞ (((−1)^(n−1) )/n^s ) Dirichlet eta function prove that η(s)=(1−2^(1−s) )ζ(s)

η(s)=n=1(1)n1nsDirichletetafunctionprovethatη(s)=(121s)ζ(s)

Question Number 2699    Answers: 1   Comments: 0

Find the remainder when 3^(215) is divided by 43.

Findtheremainderwhen3215isdividedby43.

Question Number 2603    Answers: 2   Comments: 0

You have a 3 litre jug and a 5 litre jug. Make 4 litres.

Youhavea3litrejuganda5litrejug.Make4litres.

Question Number 2575    Answers: 2   Comments: 4

a_1 =0 a_n =27×a_(n−1) +(n−1) Σ_(k=1) ^m a_k =?

a1=0an=27×an1+(n1)mk=1ak=?

Question Number 2432    Answers: 1   Comments: 0

What is the sum of digits of 3333^(4444) , Say sum of all digits of 3333^(4444) is A, If A>10 then sum all digits of A. This process is repeated until a single digits sum x in obtained. x=?

Whatisthesumofdigitsof33334444,Saysumofalldigitsof33334444isA,IfA>10thensumalldigitsofA.Thisprocessisrepeateduntilasingledigitssumxinobtained.x=?

Question Number 2387    Answers: 0   Comments: 4

How many 0s at the end of 1000!? What is the first non zero digits from the right?

Howmany0sattheendof1000!?Whatisthefirstnonzerodigitsfromtheright?

Question Number 2381    Answers: 1   Comments: 2

Of the numbers 1, 2, 3, ... , 6000, how many are not multiples of 2, 3 or 5?

Ofthenumbers1,2,3,...,6000,howmanyarenotmultiplesof2,3or5?

Question Number 2148    Answers: 1   Comments: 0

Is 3^(2015) −2^(2015) prime?

Is3201522015prime?

Question Number 1942    Answers: 1   Comments: 1

Let N be a positive integer with prime factorisation N=p_1 ^m_1 p_2 ^m_2 p_3 ^m_3 ×...×p_(n−1) ^m_(n−1) p_n ^m_n where n,m_i ∈Z^+ and p_r is prime. How many proper factors does N have? Investigate cases where n=1,n=2, n=3 and n=4. What is the smallest positive integer with 12 proper factors? What is the smallest positive integer with at least 12 proper factors? (A proper factor of a positive number N is positive nteger M such that M≠1 and M≠N.)

LetNbeapositiveintegerwithprimefactorisationN=p1m1p2m2p3m3×...×pn1mn1pnmnwheren,miZ+andprisprime.HowmanyproperfactorsdoesNhave?Investigatecaseswheren=1,n=2,n=3andn=4.Whatisthesmallestpositiveintegerwith12properfactors?Whatisthesmallestpositiveintegerwithatleast12properfactors?(AproperfactorofapositivenumberNispositiventegerMsuchthatM1andMN.)

Question Number 1895    Answers: 2   Comments: 5

Let us generalise the result of taking the inverse tangent of a complex number to the form tan^(−1) (c+id)=a+ib where a,b,c,d∈R and i=(√(−1)). Determine a and b respectively in terms of c and d.

Letusgeneralisetheresultoftakingtheinversetangentofacomplexnumbertotheformtan1(c+id)=a+ibwherea,b,c,dRandi=1.Determineaandbrespectivelyintermsofcandd.

Question Number 1776    Answers: 0   Comments: 0

P_k ={x∈N,n∈N:x>0,Σ_(n∣x) 1=k} C=∪_(k≥3) P_k {0,1}∪C∪P=N proof or give a counter example that (x,y,z)∈C^3 ,x^2 ∣yz⇒x∣y∨x∣z

Pk={xN,nN:x>0,nx1=k}C=k3Pk{0,1}CP=Nprooforgiveacounterexamplethat(x,y,z)C3,x2yzxyxz

Question Number 1700    Answers: 1   Comments: 2

Show that (7!)^(1/7) <(8!)^(1/8) . Also show that (√(100001))−(√(100000))<(1/(2(√(100000)))) .

Showthat(7!)17<(8!)18.Alsoshowthat100001100000<12100000.

Question Number 1164    Answers: 2   Comments: 1

How many five digit numbers exist such that the sum of their digits equals 43? How many exist if the sum is 39?

Howmanyfivedigitnumbersexistsuchthatthesumoftheirdigitsequals43?Howmanyexistifthesumis39?

Question Number 1156    Answers: 1   Comments: 1

Determine the general solution of the following linear diophantine equation for ∀N∈Z^+ ,m∈Z^+ : 8N=81m+65 .

DeterminethegeneralsolutionofthefollowinglineardiophantineequationforNZ+,mZ+:8N=81m+65.

Question Number 795    Answers: 1   Comments: 0

what is the last digit of 7^((7^((7....)) )) the number of 7′s is 1001

whatisthelastdigitof7(7(7....))thenumberof7sis1001

Question Number 785    Answers: 1   Comments: 0

Prove that if two numbers are chosen at random then the probability that their sum is divisible by n is (1/n).

Provethatiftwonumbersarechosenatrandomthentheprobabilitythattheirsumisdivisiblebynis1n.

Question Number 772    Answers: 0   Comments: 4

prove that 5555^(2222) +2222^(5555) is divisible by 7

provethat55552222+22225555isdivisibleby7

Question Number 769    Answers: 1   Comments: 1

Prove that product of any n consecutive integers is divisiblr by n!

Provethatproductofanynconsecutiveintegersisdivisiblrbyn!

Question Number 765    Answers: 1   Comments: 0

List all primes p for which p+2 and p+4 are also primes.

Listallprimespforwhichp+2andp+4arealsoprimes.

Question Number 751    Answers: 1   Comments: 0

Determine the number of integral factors of 105840, excluding 1 and 105840.

Determinethenumberofintegralfactorsof105840,excluding1and105840.

Question Number 591    Answers: 1   Comments: 0

Prove by induction on n, for n≥2, u_n ≥ 2^3^(n−1) for the sequence {u_n } defined by the recurrence relation u_1 =1 u_(n+1) =(u_n +(1/u_n ))^3 , n≥1 .

Provebyinductiononn,forn2,un23n1forthesequence{un}definedbytherecurrencerelationu1=1un+1=(un+1un)3,n1.

Question Number 572    Answers: 1   Comments: 0

xy=6(x+y) x^2 +y^2 =325 x=? y=?

xy=6(x+y)x2+y2=325x=?y=?

Question Number 558    Answers: 1   Comments: 0

Determine the complex number z such that z^2 =tanx+icosx, in the form z=p+ik, p,k∈R.

Determinethecomplexnumberzsuchthatz2=tanx+icosx,intheformz=p+ik,p,kR.

Question Number 552    Answers: 1   Comments: 0

proof that log_2 3 is irrational

proofthatlog23isirrational

  Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com