Question and Answers Forum

All Questions   Topic List

Number TheoryQuestion and Answers: Page 7

Question Number 155133    Answers: 2   Comments: 0

Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 ))=?

n=0(1)n(2n+1)3=?

Question Number 154672    Answers: 1   Comments: 0

how many positive x≤10 000 integers are such that 2^x −x^2 is divisible by 7?

howmanypositivex10000integersaresuchthat2xx2isdivisibleby7?

Question Number 153916    Answers: 0   Comments: 0

The value of Σ_(n=0) ^∞ (((3_n )(2_n )x^n )/((1_n )n!)) β(2,n+1) is a. (1/2)Σ_(n=0) ^∞ (2_n )(x^n /(n!)) b. (1/2)Σ_(n=0) ^∞ (((3_n )(2_n ))/((1_n ))) (x^n /(n!)) c. (1/2)Σ_(n=0) ^∞ (((2_n )x^n )/((1_n )n!)) d. (1/3)Σ_(n=0) ^∞ (((3_n )x^n )/((1_n )n!))

Thevalueofn=0(3n)(2n)xn(1n)n!β(2,n+1)isa.12n=0(2n)xnn!b.12n=0(3n)(2n)(1n)xnn!c.12n=0(2n)xn(1n)n!d.13n=0(3n)xn(1n)n!

Question Number 153458    Answers: 0   Comments: 1

Given a set consisting of 22 integer A={±a_1 ,±a_2 ,...,±a_(11) }. Show that exist subset of S with properties (1) for every i=1,2,3,...,11 have least one between a_i or −a_i element of S (2)the sum all possible numbers in S divisible by 2015

Givenasetconsistingof22integerA={±a1,±a2,...,±a11}.ShowthatexistsubsetofSwithproperties(1)foreveryi=1,2,3,...,11haveleastonebetweenaioraielementofS(2)thesumallpossiblenumbersinSdivisibleby2015

Question Number 151265    Answers: 1   Comments: 3

Question Number 150984    Answers: 0   Comments: 0

Question Number 150965    Answers: 1   Comments: 0

Question Number 150876    Answers: 0   Comments: 0

Question Number 150223    Answers: 2   Comments: 0

Question Number 149962    Answers: 0   Comments: 0

⌊x⌋+⌊y⌋=43.8 and x+y−⌊x⌋=18.4 .Find 100(x+y).

x+y=43.8andx+yx=18.4.Find100(x+y).

Question Number 148951    Answers: 2   Comments: 0

Let complex number z=(a+cos θ)+(2a−sin θ)i . If ∣z∣ ≤2 for any θ∈R then the range of real number a is ___

Letcomplexnumberz=(a+cosθ)+(2asinθ)i.Ifz2foranyθRthentherangeofrealnumberais___

Question Number 148211    Answers: 1   Comments: 0

Question Number 145408    Answers: 0   Comments: 0

∫_0 ^x ⌊u⌋(⌊u⌋+1)f(u)du=Σ_(n=1) ^(⌊x⌋) n∫_n ^x f(u)du Prove that

0xu(u+1)f(u)du=xn=1nnxf(u)duProvethat

Question Number 145359    Answers: 1   Comments: 0

How many digits will there be in 875^(16) ?

Howmanydigitswilltherebein87516?

Question Number 143790    Answers: 0   Comments: 2

Π_(n=1) ^∞ (1+(x^3 /n^3 ))

n=1(1+x3n3)

Question Number 143085    Answers: 0   Comments: 0

φ(n^4 +1)=8n φ:Euler totient function Solve for n∈N

ϕ(n4+1)=8nϕ:EulertotientfunctionSolvefornN

Question Number 142880    Answers: 1   Comments: 0

Prove that 𝛗(n)=nΠ_k (1−(1/p_k )) φ(n):Euler totient function

Provethatϕ(n)=nk(11pk)ϕ(n):Eulertotientfunction

Question Number 142263    Answers: 0   Comments: 0

(((0 sin(x))),((0 0)) )!+ (((0 sin(2x))),((0 0)) )!+ (((0 sin(3x))),((0 0)) )!+... n^(th) term

(0sin(x)00)!+(0sin(2x)00)!+(0sin(3x)00)!+...nthterm

Question Number 141694    Answers: 0   Comments: 0

log((((√5)+1)/(10))9e^γ )=((ζ(2))/2)(((1^2 +9^2 )/(10^2 )))−((ζ(3))/3) (((1^3 +9^3 )/(10^3 )) )+((ζ(4))/4)(((1^4 +9^4 )/(10^4 )))−... γ=Euler Mascheroni Constant

log(5+1109eγ)=ζ(2)2(12+92102)ζ(3)3(13+93103)+ζ(4)4(14+94104)...γ=EulerMascheroniConstant

Question Number 140833    Answers: 3   Comments: 1

Determine if the series Σ_(n=1) ^∞ a_n defined by the formula converges or diverges . a_1 = 4 , a_(n+1) = ((10+sin n)/n). a_n

Determineiftheseriesn=1andefinedbytheformulaconvergesordiverges.a1=4,an+1=10+sinnn.an

Question Number 140428    Answers: 1   Comments: 1

If 4x=3(Mod 6), find the first four values of x.

If4x=3(Mod6),findthefirstfourvaluesofx.

Question Number 140329    Answers: 2   Comments: 0

x^(⌊x⌋) + x^(⌈x⌉) = ((175)/8)

xx+xx=1758

Question Number 140449    Answers: 1   Comments: 0

Find the first four values of 2x+5=1(mod 7)

Findthefirstfourvaluesof2x+5=1(mod7)

Question Number 139668    Answers: 1   Comments: 3

Question Number 139560    Answers: 0   Comments: 0

Σ_(n_1 +2n_2 +3n_3 +..+rn_r =n) ^n (1/(n_1 !n_2 !n_3 !..n_r !1^n_1 2^n_2 3^n_3 4^n_4 ...r^n_r ))=1 0≥n_1 ,n_2 ,n_3 ,..≥n Prove the above identity

nn1+2n2+3n3+..+rnr=n1n1!n2!n3!..nr!1n12n23n34n4...rnr=10n1,n2,n3,..nProvetheaboveidentity

Question Number 138003    Answers: 2   Comments: 0

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com