Question and Answers Forum

All Questions   Topic List

Operation ResearchQuestion and Answers: Page 3

Question Number 103969    Answers: 1   Comments: 0

how do you solve (D^3 +12D^2 +36D)y=0 by constant coefficients

howdoyousolve(D3+12D2+36D)y=0byconstantcoefficients

Question Number 103008    Answers: 2   Comments: 0

(dy/dx) − y.tan x = e^x .sec x

dydxy.tanx=ex.secx

Question Number 101303    Answers: 1   Comments: 1

i^i^(i.∞) =?

iii.=?

Question Number 100327    Answers: 1   Comments: 1

Solve x^2 y′′−3xy′−5y=0

Solvex2y3xy5y=0

Question Number 96138    Answers: 0   Comments: 1

xy′ + y^2 = x^2 e^x

xy+y2=x2ex

Question Number 78333    Answers: 1   Comments: 0

prove by contradiction that (√(2 )) is irrational.

provebycontradictionthat2isirrational.

Question Number 77330    Answers: 0   Comments: 3

Question Number 75821    Answers: 0   Comments: 1

Question Number 73247    Answers: 1   Comments: 0

Question Number 66875    Answers: 0   Comments: 4

Question Number 66418    Answers: 0   Comments: 0

what operation on interger used in 9(7.8)=(9.7).8??

whatoperationonintergerusedin9(7.8)=(9.7).8??

Question Number 63298    Answers: 0   Comments: 2

A particle P, moves on the curve with polar equation r = e^(kθ) , where (r,θ) are polar coordinates referred to a fixed pole and k is a positive constant. Given that the radial velocity of P is (k/r) show that the transverse acceleration of th particle is zero.

AparticleP,movesonthecurvewithpolarequationr=ekθ,where(r,θ)arepolarcoordinatesreferredtoafixedpoleandkisapositiveconstant.GiventhattheradialvelocityofPiskrshowthatthetransverseaccelerationofthparticleiszero.

Question Number 47235    Answers: 0   Comments: 0

the force acting on a particle P of mass 2kg is (2ti +4j)N. P is initially at rest at point with position vector (i+2j). Find the velocity of P when t=2 and the position vector when t=2.

theforceactingonaparticlePofmass2kgis(2ti+4j)N.Pisinitiallyatrestatpointwithpositionvector(i+2j).FindthevelocityofPwhent=2andthepositionvectorwhent=2.

Question Number 47234    Answers: 0   Comments: 0

the force acting on a particle P of mass 2kg is (2ti +4j)N. P is initially at rest at point with position vector (i+2j). Find the velocity of P when t=2 and the position vector when t=2.

theforceactingonaparticlePofmass2kgis(2ti+4j)N.Pisinitiallyatrestatpointwithpositionvector(i+2j).FindthevelocityofPwhent=2andthepositionvectorwhent=2.

Question Number 47233    Answers: 0   Comments: 0

the force acting on a particle P of mass 2kg is (2ti +4j)N. P is initially at rest at point with position vector (i+2j). Find the velocity of P when t=2 and the position vector when t=2.

theforceactingonaparticlePofmass2kgis(2ti+4j)N.Pisinitiallyatrestatpointwithpositionvector(i+2j).FindthevelocityofPwhent=2andthepositionvectorwhent=2.

Question Number 47138    Answers: 0   Comments: 0

Question Number 42316    Answers: 1   Comments: 2

Question Number 41388    Answers: 0   Comments: 1

Question Number 26557    Answers: 0   Comments: 0

Question Number 25310    Answers: 0   Comments: 0

Question Number 11261    Answers: 0   Comments: 0

The n^(th) term of a progression is np+q and the sum of n terms is denoted by S_n . Given that the 6^(th) term is 4 times 2^(nd) term and that S_3 =12, find the value of p and q. Express S_n in terms of n.

Thenthtermofaprogressionisnp+qandthesumofntermsisdenotedbySn.Giventhatthe6thtermis4times2ndtermandthatS3=12,findthevalueofpandq.ExpressSnintermsofn.

Question Number 9420    Answers: 0   Comments: 0

x and y are two binary numbers which are in 4 − bit 2′s complement formate, where x = 00102 and y = 11012 : clearly, y is a negative number. what is the result of x + y in decimal formate.

xandyaretwobinarynumberswhicharein4bit2scomplementformate,wherex=00102andy=11012:clearly,yisanegativenumber.whatistheresultofx+yindecimalformate.

Question Number 9419    Answers: 0   Comments: 0

Develop an algorithm and draw a flowchat to find the sum of numbers from 1 − 100

Developanalgorithmanddrawaflowchattofindthesumofnumbersfrom1100

Question Number 5453    Answers: 0   Comments: 0

gn

gn

Question Number 5458    Answers: 0   Comments: 0

=7↽

=7

Question Number 2032    Answers: 0   Comments: 1

f:[0,+1]→R η(f):=∫_0 ^1 f^2 dx and if ∀x∈[0,1],f∈[m,M] for some (m,M)∈R^2 f↑:=max(f)−f f↓:=f−min(f) μ(f):=∫_0 ^1 f↓f↑dx then f=e^x , η(f)=^? μ(f) f=x,η(f)=^? μ(f) ∃f,η(f)=0??? ∃f,μ(f)=0??? μ(f)=0, does η(f)=0??? η(f)=0, does μ(f)=0???

f:[0,+1]Rη(f):=10f2dxandifx[0,1],f[m,M]forsome(m,M)R2f↑:=max(f)ff↓:=fmin(f)μ(f):=10ffdxthenf=ex,η(f)=?μ(f)f=x,η(f)=?μ(f)f,η(f)=0???f,μ(f)=0???μ(f)=0,doesη(f)=0???η(f)=0,doesμ(f)=0???

  Pg 1      Pg 2      Pg 3      Pg 4   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com