Question and Answers Forum |
Operation ResearchQuestion and Answers: Page 4 |
lets a<b and f:[a,b]→R integable into [a,b] and continuous lets I a closed subset of [a,b] proof that (or give a conter example) ∫_I fdx=0 ∀I⊂[a,b]⇒f=0 |
[((x(ρ,θ,ξ))),((y(ρ,θ,ξ))),((z(ρ,θ,ξ))) ]= [((ρe^ξ cos θ)),((ρe^ξ sin θ)),(ξ) ] { ((ρ∈[0,+∞))),((θ∈[0,2π))),((ξ∈R)) :} r(ρ,θ,ξ)=x(ρ,θ,ξ)i+y(ρ,θ,ξ)j+z(ρ,θ,ξ)k a_ρ =(∂r/∂ρ) a_θ =(∂r/∂θ) a_ξ =(∂r/∂ξ) a_ρ ∙a_ρ +a_θ ∙a_θ +a_ξ ∙a_ξ =??? a_ρ ∙a_θ +a_ρ ∙a_ξ +a_θ ∙a_ξ =??? a_ρ ×a_θ +a_ρ ×a_ξ +a_θ ×a_ξ =??? |
x=(x_1 ,x_2 ),y=(y_1 ,y_2 ) η:[0,1)^4 →[0,1] η(x,y):=med[(((1−x_1 )^y_1 +(1−y_1 )^x_1 )/2),(((1−x_2 )^y_2 +(1−y_2 )^x_2 )/2)] med(x,y):=((min(x,y)+max(x,y))/2) η(x,y)=^? η(y,x) η(x,y)=0⇔^? x=y η(x,z)≤^? η(x,y)+η(y,z) |
W{f(x)}(t)=∫_0 ^(1/t) f(x)ln(xt)dx,t>0 W{f(x)+g(x)}(t)=^? W{f(x)}(t)+W{g(x)}(t) W{cf(x)}(t)=^? cW{f(x)}(t) W{1}(t)=? W{x}(t)=? W{x^n }(t)=?,n∈N W{f′(x)}(t)=? |
f:[0,1]→R g:[0,1]×N→R g_n (x)=f[g_(n−1) (x)] g_0 (x)=x A{f}(n)=∫_0 ^1 f(t)g_n (t)dt A{f+g}=^? A{f}+A{g} A{kf}=^? kA{f} |
x=i+f,i∈N,f∈[0,1) x^2 =(i+f)^2 =i^2 +2if+f^2 x∈R_+ i+2f=2⇒x^2 =2i+f^2 2if=0⇒x^2 =i^2 +f^2 |
lets ⊞:(R^+ )^2 →R^+ defined by x⊞y=(√(⌊x⌋⌈x⌉))+y 1. x⊞y=^? y⊞x 2.x⊞(y⊞z)=^? (x⊞y)⊞z 3.∃e,∀x∈R^+ ,x⊞e=x ? 4.∃e,∀x∈R^+ ,e⊞x=x ? |