Question and Answers Forum

All Questions   Topic List

Operation ResearchQuestion and Answers: Page 4

Question Number 1987    Answers: 0   Comments: 1

lets a<b and f:[a,b]→R integable into [a,b] and continuous lets I a closed subset of [a,b] proof that (or give a conter example) ∫_I fdx=0 ∀I⊂[a,b]⇒f=0

letsa<bandf:[a,b]Rintegableinto[a,b]andcontinuousletsIaclosedsubsetof[a,b]proofthat(orgiveaconterexample)Ifdx=0I[a,b]f=0

Question Number 1858    Answers: 1   Comments: 0

[((x(ρ,θ,ξ))),((y(ρ,θ,ξ))),((z(ρ,θ,ξ))) ]= [((ρe^ξ cos θ)),((ρe^ξ sin θ)),(ξ) ] { ((ρ∈[0,+∞))),((θ∈[0,2π))),((ξ∈R)) :} r(ρ,θ,ξ)=x(ρ,θ,ξ)i+y(ρ,θ,ξ)j+z(ρ,θ,ξ)k a_ρ =(∂r/∂ρ) a_θ =(∂r/∂θ) a_ξ =(∂r/∂ξ) a_ρ ∙a_ρ +a_θ ∙a_θ +a_ξ ∙a_ξ =??? a_ρ ∙a_θ +a_ρ ∙a_ξ +a_θ ∙a_ξ =??? a_ρ ×a_θ +a_ρ ×a_ξ +a_θ ×a_ξ =???

[x(ρ,θ,ξ)y(ρ,θ,ξ)z(ρ,θ,ξ)]=[ρeξcosθρeξsinθξ]{ρ[0,+)θ[0,2π)ξRr(ρ,θ,ξ)=x(ρ,θ,ξ)i+y(ρ,θ,ξ)j+z(ρ,θ,ξ)kaρ=rρaθ=rθaξ=rξaρaρ+aθaθ+aξaξ=???aρaθ+aρaξ+aθaξ=???aρ×aθ+aρ×aξ+aθ×aξ=???

Question Number 1448    Answers: 1   Comments: 2

x=(x_1 ,x_2 ),y=(y_1 ,y_2 ) η:[0,1)^4 →[0,1] η(x,y):=med[(((1−x_1 )^y_1 +(1−y_1 )^x_1 )/2),(((1−x_2 )^y_2 +(1−y_2 )^x_2 )/2)] med(x,y):=((min(x,y)+max(x,y))/2) η(x,y)=^? η(y,x) η(x,y)=0⇔^? x=y η(x,z)≤^? η(x,y)+η(y,z)

x=(x1,x2),y=(y1,y2)η:[0,1)4[0,1]η(x,y):=med[(1x1)y1+(1y1)x12,(1x2)y2+(1y2)x22]med(x,y):=min(x,y)+max(x,y)2η(x,y)=?η(y,x)η(x,y)=0?x=yη(x,z)?η(x,y)+η(y,z)

Question Number 1351    Answers: 0   Comments: 2

W{f(x)}(t)=∫_0 ^(1/t) f(x)ln(xt)dx,t>0 W{f(x)+g(x)}(t)=^? W{f(x)}(t)+W{g(x)}(t) W{cf(x)}(t)=^? cW{f(x)}(t) W{1}(t)=? W{x}(t)=? W{x^n }(t)=?,n∈N W{f′(x)}(t)=?

W{f(x)}(t)=1/t0f(x)ln(xt)dx,t>0W{f(x)+g(x)}(t)=?W{f(x)}(t)+W{g(x)}(t)W{cf(x)}(t)=?cW{f(x)}(t)W{1}(t)=?W{x}(t)=?W{xn}(t)=?,nNW{f(x)}(t)=?

Question Number 1055    Answers: 0   Comments: 0

f:[0,1]→R g:[0,1]×N→R g_n (x)=f[g_(n−1) (x)] g_0 (x)=x A{f}(n)=∫_0 ^1 f(t)g_n (t)dt A{f+g}=^? A{f}+A{g} A{kf}=^? kA{f}

f:[0,1]Rg:[0,1]×NRgn(x)=f[gn1(x)]g0(x)=xA{f}(n)=10f(t)gn(t)dtA{f+g}=?A{f}+A{g}A{kf}=?kA{f}

Question Number 1034    Answers: 1   Comments: 0

x=i+f,i∈N,f∈[0,1) x^2 =(i+f)^2 =i^2 +2if+f^2 x∈R_+ i+2f=2⇒x^2 =2i+f^2 2if=0⇒x^2 =i^2 +f^2

x=i+f,iN,f[0,1)x2=(i+f)2=i2+2if+f2xR+i+2f=2x2=2i+f22if=0x2=i2+f2

Question Number 746    Answers: 1   Comments: 1

lets ⊞:(R^+ )^2 →R^+ defined by x⊞y=(√(⌊x⌋⌈x⌉))+y 1. x⊞y=^? y⊞x 2.x⊞(y⊞z)=^? (x⊞y)⊞z 3.∃e,∀x∈R^+ ,x⊞e=x ? 4.∃e,∀x∈R^+ ,e⊞x=x ?

lets:(R+)2R+definedbyxy=xx+y1.xy=?yx2.x(yz)=?(xy)z3.e,xR+,xe=x?4.e,xR+,ex=x?

  Pg 1      Pg 2      Pg 3      Pg 4   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com