Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 10

Question Number 195718    Answers: 1   Comments: 0

Question Number 195612    Answers: 1   Comments: 0

Question Number 195606    Answers: 0   Comments: 1

Question Number 195557    Answers: 1   Comments: 0

Question Number 195520    Answers: 3   Comments: 0

find domine and range of function f(x,y) = (√((x+y^2 )/(x^2 +y^2 −4)))

finddomineandrangeoffunctionf(x,y)=x+y2x2+y24

Question Number 195501    Answers: 3   Comments: 0

Question Number 195412    Answers: 2   Comments: 0

Question Number 195208    Answers: 4   Comments: 0

Question Number 195129    Answers: 3   Comments: 0

Calculer la valeur de la serie suivante: S=(3/2)+(5/8)+(7/(32))+(9/(128))+.....

Calculerlavaleurdelaseriesuivante:S=32+58+732+9128+.....

Question Number 194887    Answers: 1   Comments: 0

What is the Inverse laplace transform of ((S + 2)/(S^2 +4S + 7)) Urgent!

WhatistheInverselaplacetransformofS+2S2+4S+7Urgent!

Question Number 194878    Answers: 2   Comments: 0

Question Number 194652    Answers: 0   Comments: 0

Question Number 194606    Answers: 0   Comments: 0

When a kichen is removed from an oven, its temperature is measured at 300^0 F. Three minutes later, its temperature is 200^0 F. How longwill it take the kitchen to cool of to a room temperature of 70^0 F?

Whenakichenisremovedfromanoven,itstemperatureismeasuredat3000F.Threeminuteslater,itstemperatureis2000F.Howlongwillittakethekitchentocooloftoaroomtemperatureof700F?

Question Number 194563    Answers: 0   Comments: 0

A mass of 12kg rests on a smooth inclined plane which is 6m long and 1m high. The mass is connected by a light inextensible string which passes over a smooth pulley fixed at the top of the plane to a mass of 4kg which is hanging freely. With the string taut, the system is released from rest. Using Polya problem solving approach find the following: a. acceleration of the system b i. velocity with which the 4kg mass hits the ground. b ii. time the 4kg mass takes to hit the ground

Amassof12kgrestsonasmoothinclinedplanewhichis6mlongand1mhigh.Themassisconnectedbyalightinextensiblestringwhichpassesoverasmoothpulleyfixedatthetopoftheplanetoamassof4kgwhichishangingfreely.Withthestringtaut,thesystemisreleasedfromrest.UsingPolyaproblemsolvingapproachfindthefollowing:a.accelerationofthesystembi.velocitywithwhichthe4kgmasshitstheground.bii.timethe4kgmasstakestohittheground

Question Number 194499    Answers: 1   Comments: 3

3^x + 4^x = 5^x find x ?

3x+4x=5xfindx?

Question Number 194431    Answers: 0   Comments: 0

Question Number 194317    Answers: 0   Comments: 0

Question Number 194058    Answers: 0   Comments: 0

Ques. 1 Let G = C_5 × C_(25) × C_(625) . Determine the number of elements of each order in G Ques. 2 List the abelian groups of order 16 and of order 27 up to Isomorphism. Ques. 3 Describe a Sylow 2−subgroup in S_5 , and how many Sylow 2−subgroups are in S_5 ?

Ques.1LetG=C5×C25×C625.DeterminethenumberofelementsofeachorderinGQues.2Listtheabeliangroupsoforder16andoforder27uptoIsomorphism.Ques.3DescribeaSylow2subgroupinS5,andhowmanySylow2subgroupsareinS5?

Question Number 193924    Answers: 1   Comments: 2

question about tinkutara how can an answer be placed in a box.

questionabouttinkutarahowcanananswerbeplacedinabox.

Question Number 193921    Answers: 0   Comments: 0

Show that the kernel of a group homomorhism θ : G → H is a normal subgroup. Hint: Check the existence of the combination g^(−1) kg in the kernel.

Showthatthekernelofagrouphomomorhismθ:GHisanormalsubgroup.Hint:Checktheexistenceofthecombinationg1kginthekernel.

Question Number 193896    Answers: 0   Comments: 0

Ques. 12 If Y = {0, 1, 2, 3, 4} is transversal for 5Z in (Z, +). Show whether or not Y is a subgroup of 5Z subgroup under addition of integers modulo of 5

Ques.12IfY={0,1,2,3,4}istransversalfor5Zin(Z,+).ShowwhetherornotYisasubgroupof5Zsubgroupunderadditionofintegersmoduloof5

Question Number 193893    Answers: 1   Comments: 0

Ques. 11 Let {H_α } ∈ Ω be a family of subgroup of a group G then prove that ∩_(α=Ω) H_α is also a subgroup Ques. 12 Using GAP, find the elements A, B and C in D_5 such that AB = BC but A ≠ C.

Ques.11Let{Hα}ΩbeafamilyofsubgroupofagroupGthenprovethatα=ΩHαisalsoasubgroupQues.12UsingGAP,findtheelementsA,BandCinD5suchthatAB=BCbutAC.

Question Number 193892    Answers: 2   Comments: 0

Ques. Find the number of integers in the set S={1,2,3,...,60} which are not divisible by 2 nor by 3 nor by 5. Hello

Ques.FindthenumberofintegersinthesetS={1,2,3,...,60}whicharenotdivisibleby2norby3norby5.Hello

Question Number 193871    Answers: 1   Comments: 1

Ques. 8 Find the signum (sign or sgn) of the permutation θ=(12345678). Hint : for any permutation β, take sgn β = {_(−1 if β is odd) ^(1 if β is even) Ques. 9 Prove that ∣S_n ∣ = n!. Ques. 10 Provd that for b∈S_n , sgn b = sgn b^(−1) .

Ques.8Findthesignum(signorsgn)ofthepermutationθ=(12345678).Hint:foranypermutationβ,takesgnβ={1ifβisodd1ifβisevenQues.9ProvethatSn=n!.Ques.10ProvdthatforbSn,sgnb=sgnb1.

Question Number 193804    Answers: 2   Comments: 0

Ques. 6 Let (G, ∗) be a group. and let C={c∈G : c∗a = a∗c ∀a∈G}. Prove that C is subgroup of G. hence or otherwise show that C is Abelian. [Note C is called the center of group G] Ques. 7 If (G, ∗) is a group such that (a∗b)^2 = a^2 ∗b^2 (multiplicatively) for all a,b∈G. Show that G must be Abelian

Ques.6Let(G,)beagroup.andletC={cG:ca=acaG}.ProvethatCissubgroupofG.henceorotherwiseshowthatCisAbelian.[NoteCiscalledthecenterofgroupG]Ques.7If(G,)isagroupsuchthat(ab)2=a2b2(multiplicatively)foralla,bG.ShowthatGmustbeAbelian

Question Number 193759    Answers: 2   Comments: 0

Ques. 5 Prove that if a,b are any elements of a group (G, ∗), then the equation y∗a=b has a unique solution in (G, ∗). Ques. 6 a) Show that the set G of all non-zero complex numbers, is a group under multiplication of complex numbers. b) Show that H={a∈G : a_1 ^2 + a_2 ^2 = 1}, where a_1 = Re a and a_2 = Im a is a subgroup of G.

Ques.5Provethatifa,bareanyelementsofagroup(G,),thentheequationya=bhasauniquesolutionin(G,).Ques.6a)ShowthatthesetGofallnonzerocomplexnumbers,isagroupundermultiplicationofcomplexnumbers.b)ShowthatH={aG:a12+a22=1},wherea1=Reaanda2=ImaisasubgroupofG.

  Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com