Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 110

Question Number 38857    Answers: 0   Comments: 0

Question Number 38856    Answers: 0   Comments: 0

Question Number 38855    Answers: 0   Comments: 0

Question Number 38854    Answers: 0   Comments: 0

Question Number 38853    Answers: 0   Comments: 1

Question Number 38847    Answers: 0   Comments: 0

Question Number 38836    Answers: 0   Comments: 0

Question Number 38734    Answers: 0   Comments: 1

Find the domain of the function f (x) = 1 − cos^2 x

Findthedomainofthefunctionf(x)=1cos2x

Question Number 38562    Answers: 1   Comments: 0

((√2) +i)(1−(√(2i)) )

(2+i)(12i)

Question Number 38559    Answers: 1   Comments: 0

in a geometric series, the first term =a, common ratio=r. If S_n denotes the sum of the n terms and U_n =Σ_(n=1) ^n S_(n,) then rS_n +(1−r)U_(n ) equals to (a) 0 (b) n (c) na (d)nar

inageometricseries,thefirstterm=a,commonratio=r.IfSndenotesthesumofthentermsandUn=nn=1Sn,thenrSn+(1r)Unequalsto(a)0(b)n(c)na(d)nar

Question Number 38535    Answers: 0   Comments: 0

Given the function f(x) where f(x)= { ((∫x^2 + 1 ,for {x:x D(f) 2)),((∫x^3 − 1,for y = f′(x))) :} a) Evaluate f(2) if f(a)= 2 + a^(n−1) find the value of a hence the domain of f(x).

Giventhefunctionf(x)wheref(x)={x2+1,for{x:xD(f)2x31,fory=f(x)a)Evaluatef(2)iff(a)=2+an1findthevalueofahencethedomainoff(x).

Question Number 38534    Answers: 0   Comments: 0

∫∫_R (2x + 3y)^2 dA=??

R(2x+3y)2dA=??

Question Number 38517    Answers: 2   Comments: 0

simlify A= (1/((2−(√5))^4 )) + (1/((2+(√5))^4 )) B = (1/((3−(√2))^6 )) +(1/((3+(√2))^6 ))

simlifyA=1(25)4+1(2+5)4B=1(32)6+1(3+2)6

Question Number 38515    Answers: 1   Comments: 0

Question ; x^3 + x^3 = A) x^9 B) x^6 C) x^3 D) 1 Give a reason for your answer.

Question;x3+x3=A)x9B)x6C)x3D)1Giveareasonforyouranswer.

Question Number 38495    Answers: 4   Comments: 0

prove that tan 3a tan 2a tan a = tan 3a − tan 2a − tan a

provethattan3atan2atana=tan3atan2atana

Question Number 38488    Answers: 2   Comments: 0

find the value of x if 3^x = 9x

findthevalueofxif3x=9x

Question Number 39416    Answers: 1   Comments: 0

Given that f(x) is a cubic function and f(x) = x^3 − (x^2 /4) + 5x − 7 a) find one factor of f(x) b) find (d^2 y/dx^2 ) for f(x) c) hence Evaluate y = ∫_0 ^∞ f(x).

Giventhatf(x)isacubicfunctionandf(x)=x3x24+5x7a)findonefactoroff(x)b)findd2ydx2forf(x)c)henceEvaluatey=0f(x).

Question Number 38391    Answers: 1   Comments: 0

a+2b+3c=12 2ab+3ac+6bc=48 a+b+c=...

a+2b+3c=122ab+3ac+6bc=48a+b+c=...

Question Number 38420    Answers: 0   Comments: 0

In the figure below,a particle A of mass 2kg is lying on a rough wooden block.The particle A is connected by a light inextensible horizontal string passing over a smooth light fixed pulley at the edge of the block,to a particle B of mass 3kg which hangs freely. The coefficent of friction between the particle A and the surface of the block is μ. Given that the string is taut and the system is released from rest such that the particle move with an acceleration of 4ms^(−1) . Find a) the tension b) the value of μ.

Inthefigurebelow,aparticleAofmass2kgislyingonaroughwoodenblock.TheparticleAisconnectedbyalightinextensiblehorizontalstringpassingoverasmoothlightfixedpulleyattheedgeoftheblock,toaparticleBofmass3kgwhichhangsfreely.ThecoefficentoffrictionbetweentheparticleAandthesurfaceoftheblockisμ.Giventhatthestringistautandthesystemisreleasedfromrestsuchthattheparticlemovewithanaccelerationof4ms1.Finda)thetensionb)thevalueofμ.

Question Number 38419    Answers: 1   Comments: 0

Question Number 38373    Answers: 1   Comments: 7

Question Number 38366    Answers: 1   Comments: 0

At time t,the force acting on a particle P of mass 2kg is (2ti + 4j)N.P is initially at rest at the point with position vector (i + 2j). Find: a) the velocity of P when t = 2. b) the position vector when t = 2.

Attimet,theforceactingonaparticlePofmass2kgis(2ti+4j)N.Pisinitiallyatrestatthepointwithpositionvector(i+2j).Find:a)thevelocityofPwhent=2.b)thepositionvectorwhent=2.

Question Number 38362    Answers: 0   Comments: 0

Question Number 38365    Answers: 1   Comments: 0

A particle P moves on a straightline from a fixed point O and the distance x from O after t seconds is given as x = (1/(4 )) t^4 − (3/2) t^2 + 2t. Find: a) the velocity of P when t = 2, b) the acceleration of P when t = 2, c) the time at which the speed P is Minimum.

AparticlePmovesonastraightlinefromafixedpointOandthedistancexfromOaftertsecondsisgivenasx=14t432t2+2t.Find:a)thevelocityofPwhent=2,b)theaccelerationofPwhent=2,c)thetimeatwhichthespeedPisMinimum.

Question Number 38296    Answers: 0   Comments: 7

i have a suggestion pls comment...we are all virtual friends common bond is mathematics so may know each other by posting our self photo...if administator give permission..

ihaveasuggestionplscomment...weareallvirtualfriendscommonbondismathematicssomayknoweachotherbypostingourselfphoto...ifadministatorgivepermission..

Question Number 38252    Answers: 0   Comments: 2

if x^2 + 3xy − y^2 = 3 find (dy/dx) at point (1,1) hence differentiate ((sin x)/(1 + x)) with respect to x.

ifx2+3xyy2=3finddydxatpoint(1,1)hencedifferentiatesinx1+xwithrespecttox.

  Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com