Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 120

Question Number 27930    Answers: 0   Comments: 2

Question Number 27920    Answers: 1   Comments: 0

∫(((x−1)dx)/((x+1)(√(x^3 +x^2 +x))))

(x1)dx(x+1)x3+x2+x

Question Number 27885    Answers: 0   Comments: 1

(4) Find the term indepen− dent of x in the expansion of (x^2 −2+(1/x^2 ))^6

(4)Findthetermindependentofxintheexpansionof(x22+1x2)6

Question Number 27884    Answers: 2   Comments: 0

(3) Find the term independ− ent of x in the expansion of ( x+(1/x))^2 (x−(1/x))^(12)

(3)Findthetermindependentofxintheexpansionof(x+1x)2(x1x)12

Question Number 27882    Answers: 1   Comments: 0

(2) Find the term indepen− dent of x in the expansion of (2x^2 +(1/x))^6

(2)Findthetermindependentofxintheexpansionof(2x2+1x)6

Question Number 27809    Answers: 2   Comments: 0

(1) Find the term independent of x in the expansion of (x−(2/x))^(10)

(1)Findthetermindependentofxintheexpansionof(x2x)10

Question Number 27769    Answers: 1   Comments: 0

A glass bottle full of mercury has mass 500g. On being heated through 35°C, 2.43g of mercury are expelled. calculate the mass of mercury remaining in the bottle (Cubic expansivity of mercury is 1.8 × 10^(−4) per K. linear expansivity of glass is 8.0 × 10^(−6) per K.

Aglassbottlefullofmercuryhasmass500g.Onbeingheatedthrough35°C,2.43gofmercuryareexpelled.calculatethemassofmercuryremaininginthebottle(Cubicexpansivityofmercuryis1.8×104perK.linearexpansivityofglassis8.0×106perK.

Question Number 27688    Answers: 0   Comments: 0

Write the series,indicating the 5th term,the 5th partial sum 0+1+3+...+(((n^2 +n)/2))+...

Writetheseries,indicatingthe5thterm,the5thpartialsum0+1+3+...+(n2+n2)+...

Question Number 27685    Answers: 0   Comments: 2

Write the first five series indicating the 5th term,5th partial sum Σ_(n=1) ^∞ t_n , where t_n = { ((1 for n=1)),(((1/2) for n=2)),((1−(1/2)+...+(−1)^(n+1) ((1/n)) for n>2)) :}

Writethefirstfiveseriesindicatingthe5thterm,5thpartialsumn=1tn,wheretn={1forn=112forn=2112+...+(1)n+1(1n)forn>2

Question Number 27609    Answers: 0   Comments: 0

Δ=(√(m×φ)) Δ=mass gap m=mass φ=phi calculate phi to the same number of decimal places as the mass. use the mass of an electron

Δ=m×ϕΔ=massgapm=massϕ=phicalculatephitothesamenumberofdecimalplacesasthemass.usethemassofanelectron

Question Number 27599    Answers: 0   Comments: 0

let give the equation x^6 −x−1=0 by using Newton methodfind the approximate value of the real?root for this equation.

letgivetheequationx6x1=0byusingNewtonmethodfindtheapproximatevalueofthereal?rootforthisequation.

Question Number 27603    Answers: 0   Comments: 1

Find the value of i^i ?

Findthevalueofii?

Question Number 27536    Answers: 0   Comments: 0

m_1 s_1 (x−𝛉)=m_2 s_2 (𝛉−y) ; x=? ;y=? 𝛉=? solve it as an equation....

m1s1(xθ)=m2s2(θy);x=?;y=?θ=?solveitasanequation....

Question Number 27520    Answers: 0   Comments: 0

Question Number 27430    Answers: 0   Comments: 0

A 2000kg space capsule is traveling away from the earth, determine the gravitational field strenght and gravitational force on the capsule due to the earth when it is (a) At a distance from the earth′s surface equal to the radius of the earth (b) At a very large distance away from the earth (Take g = 9.8Nkg^(−1) on earth surface)

A2000kgspacecapsuleistravelingawayfromtheearth,determinethegravitationalfieldstrenghtandgravitationalforceonthecapsuleduetotheearthwhenitis(a)Atadistancefromtheearthssurfaceequaltotheradiusoftheearth(b)Ataverylargedistanceawayfromtheearth(Takeg=9.8Nkg1onearthsurface)

Question Number 27427    Answers: 0   Comments: 0

A particle of mass 2kg moves in a force field depending on a time t given by F = 24t^2 i + (36t − 16)j − 12tk assuming that at t = 0 the particle is located at r_0 = 3i − j + 4k and has v_0 = 6i + 5j − 8k. Find (a) Velocity at any time t (b) Position at any time t (c) τ (torgue) at any time t (d) Angular momentum at any time t above the Origin

Aparticleofmass2kgmovesinaforcefielddependingonatimetgivenbyF=24t2i+(36t16)j12tkassumingthatatt=0theparticleislocatedatr0=3ij+4kandhasv0=6i+5j8k.Find(a)Velocityatanytimet(b)Positionatanytimet(c)τ(torgue)atanytimet(d)AngularmomentumatanytimetabovetheOrigin

Question Number 27428    Answers: 0   Comments: 0

Find the workdone in moving an object along a vector r = 3i + 2j − 5k if the applied force is F = 2i − j − k

Findtheworkdoneinmovinganobjectalongavectorr=3i+2j5kiftheappliedforceisF=2ijk

Question Number 27399    Answers: 1   Comments: 0

A and B are walking along a circular track.They start from same point at 8:00 am. A can walk 2 rounds per hour and B can walk 3 rounds per hour. How many times they cross each other before 9:30 am if they walk (i) Opposite to each other. (ii) In same direction. ?

AandBarewalkingalongacirculartrack.Theystartfromsamepointat8:00am.Acanwalk2roundsperhourandBcanwalk3roundsperhour.Howmanytimestheycrosseachotherbefore9:30amiftheywalk(i)Oppositetoeachother.(ii)Insamedirection.?

Question Number 27335    Answers: 0   Comments: 1

if 2 chords of ellipse have the same distance from the centre of ellipse and the eccentric angle of the end points of the chords are respectivly α β γ δ then prove that tan (α/2)×tan (β/2)×tan (γ/2)×tan (δ/2)=1

if2chordsofellipsehavethesamedistancefromthecentreofellipseandtheeccentricangleoftheendpointsofthechordsarerespectivlyαβγδthenprovethattanα2×tanβ2×tanγ2×tanδ2=1

Question Number 27334    Answers: 1   Comments: 0

(q_1 /q_2 )=((x/(0.8−x)))^2 ; x=?

q1q2=(x0.8x)2;x=?

Question Number 27332    Answers: 1   Comments: 1

Question Number 27293    Answers: 1   Comments: 0

L^(−1) ((s^3 /(s^4 +4)))=?

L1(s3s4+4)=?

Question Number 27254    Answers: 1   Comments: 0

Question Number 27253    Answers: 0   Comments: 0

Question Number 27204    Answers: 1   Comments: 0

if g(x)=f(x)+f(1−x) and f^((2)) (x)<0 then show that g(x) is increasing in (0,1/2) and g(x) is decreasing in (1/2,1)

ifg(x)=f(x)+f(1x)andf(2)(x)<0thenshowthatg(x)isincreasingin(0,1/2)andg(x)isdecreasingin(1/2,1)

Question Number 27159    Answers: 0   Comments: 0

(√(1−x^(6 ) )) +(√(1−y^6 )) =k^3 (x^3 −y^3 ) then prove that (dy/dx)=((x^2 (√(1−x^2 )))/(y^2 (√(1−y^(2Δ) ))))

1x6+1y6=k3(x3y3)thenprovethatdydx=x21x2y21y2Δ

  Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com