Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 13

Question Number 192396    Answers: 1   Comments: 0

Question Number 192342    Answers: 1   Comments: 0

1) Compute in S_a , a^(−1) ba where a=(1 2)(1 3 5), b=(1 5 7 1) 2) Given permutation α = (1 2)(3 4), β = (1 3)(5 6). Find a permutation x∈S_6 ∃αx = β. help!

1)ComputeinSa,a1bawherea=(12)(135),b=(1571)2)Givenpermutationα=(12)(34),β=(13)(56).FindapermutationxS6αx=β.help!

Question Number 192341    Answers: 1   Comments: 0

1) Find the sign of odd or even (or pality) of permutation θ=(1 2 3 4 5 6 7 8) 2) prove that any permutation θ:S→S where S is a finite set can be written as a product of disjoint cycle help!

1)Findthesignofoddoreven(orpality)ofpermutationθ=(12345678)2)provethatanypermutationθ:SSwhereSisafinitesetcanbewrittenasaproductofdisjointcyclehelp!

Question Number 192340    Answers: 1   Comments: 0

Prove that the order of any permuta− tion θ is the least common multiple of the length of its disjoint cycles. hi

Provethattheorderofanypermutationθistheleastcommonmultipleofthelengthofitsdisjointcycles.hi

Question Number 192339    Answers: 1   Comments: 0

Express as the product of disjoint cycle the permutation a) θ(1)=4 θ(2)=6 θ(1)=5 θ(4)=1 θ(5)=3 θ(6)=2 b) (1 6 3)(1 3 5 7)(6 7)(1 2 3 4 5) c) (1 2 3 4 5)(6 7)(1 3 5 7) Find the order of each of them help!

Expressastheproductofdisjointcyclethepermutationa)θ(1)=4θ(2)=6θ(1)=5θ(4)=1θ(5)=3θ(6)=2b)(163)(1357)(67)(12345)c)(12345)(67)(1357)Findtheorderofeachofthemhelp!

Question Number 192336    Answers: 1   Comments: 0

Question Number 192299    Answers: 2   Comments: 0

Question Number 192297    Answers: 2   Comments: 0

Question Number 192286    Answers: 1   Comments: 0

Determine whether f(x)=(1/x)(2x^2 +1)is: 1.A function 2. injective 3. surjective 4. bijective

Determinewhetherf(x)=1x(2x2+1)is:1.Afunction2.injective3.surjective4.bijective

Question Number 192238    Answers: 0   Comments: 0

Question Number 192160    Answers: 1   Comments: 3

if x,y,z are three distinct complex numbers such that (x/(y−z))+(y/(z−x))+(z/(x−y)) = 0 then find the value of Σ (x^2 /((y−z)^2 ))

ifx,y,zarethreedistinctcomplexnumberssuchthatxyz+yzx+zxy=0thenfindthevalueofΣx2(yz)2

Question Number 192138    Answers: 1   Comments: 0

show that f(x,y) = {_(0 (x,y)=(0,0)) ^(((x^2 y)/(x^6 + 2y^2 )) (x,y)≠ (0,0)) has a directional derivative in the direction of an arbitrary unit vector φ at (0,0), but f is not continous at (0,0)

showthatf(x,y)={0(x,y)=(0,0)x2yx6+2y2(x,y)(0,0)hasadirectionalderivativeinthedirectionofanarbitraryunitvectorϕat(0,0),butfisnotcontinousat(0,0)

Question Number 192129    Answers: 2   Comments: 0

prove that ∣a+(√(a^2 −b^2 ))∣ + ∣a − (√(a^2 −b^2 ))∣ = ∣a+b∣ +∣a−b∣ a,b ∈ C

provethata+a2b2+aa2b2=a+b+aba,bC

Question Number 192095    Answers: 0   Comments: 0

Prove a non−empty set S of a group G wrt binary operation ∗ is a sub− group of G. Iff 1) a,b ∈ S ⇒ a∗b∈S 2) a ∈ S ⇒ a^(−1) ∈ S. Hello

ProveanonemptysetSofagroupGwrtbinaryoperationisasubgroupofG.Iff1)a,bSabS2)aSa1S.Hello

Question Number 192094    Answers: 0   Comments: 0

Prove that the order of a subgroup S of a finite group G, always divide the order of group G.

ProvethattheorderofasubgroupSofafinitegroupG,alwaysdividetheorderofgroupG.

Question Number 192077    Answers: 1   Comments: 0

Let H be a non−empty subset of a group G, prove that the follow− ing are equivalent 1) H is a subgroup of G 2) for a,b ∈ H, ab^(−1) ∈ H 3) for a,b ∈ ab ∈ H 4) for a ∈ H, a^(−1) ∈ H Hint: prove 1)→2)→3)→4)→1) Help!!!

LetHbeanonemptysubsetofagroupG,provethatthefollowingareequivalent1)HisasubgroupofG2)fora,bH,ab1H3)fora,babH4)foraH,a1HHint:prove1)2)3)4)1)Help!!!

Question Number 191997    Answers: 1   Comments: 2

Show that C={−1,1,−ı,ı} where ı=(√(−1)) with addition operation is a group. Help!

ShowthatC={1,1,ı,ı}whereı=1withadditionoperationisagroup.Help!

Question Number 191986    Answers: 1   Comments: 0

Ques. 1 Let (G,∗) be a group, then show that for each a∈G, ∃ a unique element e∈G ∣ a∗e=e∗a=a Ques. 2 If a∈G ⇒ x∈G and x is unique show that if x∗a=e, then a∗x=e. Hello!

Ques.1Let(G,)beagroup,thenshowthatforeachaG,auniqueelementeGae=ea=aQues.2IfaGxGandxisuniqueshowthatifxa=e,thenax=e.Hello!

Question Number 191937    Answers: 1   Comments: 0

Check whether (Q, ∙) is a group or not Hello bosses!

Checkwhether(Q,)isagroupornotHellobosses!

Question Number 191926    Answers: 2   Comments: 0

Question Number 191787    Answers: 0   Comments: 0

Ques. 2 (Metric Space Question) Let d be a metric on a non−empty set X. Show that the function U is defined by U(x,y)=((d(x,y))/(1+d(x,y))), where x and y are arbitrary element X is also a metric on X.

Ques.2(MetricSpaceQuestion)LetdbeametriconanonemptysetX.ShowthatthefunctionUisdefinedbyU(x,y)=d(x,y)1+d(x,y),wherexandyarearbitraryelementXisalsoametriconX.

Question Number 191786    Answers: 0   Comments: 0

Ques. 1 (Metric Space Question) Let X = ρ_∞ be the set of all bounded sequences of complex numbers. That is every element of ρ_∞ is a complex sequence x^− ={x^− }_(k=1) ^∞ such ∣x_i ∣<Kx^− , i=1,2,3,... where Kx is a real number which may define on x for an arbitrary x^− ={x_i }_(i=1) ^∞ and y^− ={y_i }_(i=1) ^∞ in ρ_∞ we define as d_∞ (x,y)=Sup∣x_i −y_i ∣, Verify that d_∞ is a metric on ρ_(∞.)

Ques.1(MetricSpaceQuestion)LetX=ρbethesetofallboundedsequencesofcomplexnumbers.Thatiseveryelementofρisacomplexsequencex={x}k=1suchxi∣<Kx,i=1,2,3,...whereKxisarealnumberwhichmaydefineonxforanarbitraryx={xi}i=1andy={yi}i=1inρwedefineasd(x,y)=Supxiyi,Verifythatdisametriconρ.

Question Number 191688    Answers: 1   Comments: 9

Divide a 113mm line into ratio 1:2:4

Dividea113mmlineintoratio1:2:4

Question Number 191621    Answers: 2   Comments: 0

Question Number 191568    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (((−1)^n (x+1)^n )/((n+1)ln(n+1)))

n=1(1)n(x+1)n(n+1)ln(n+1)

Question Number 191499    Answers: 0   Comments: 6

x + ln(1−x) = 0.1614, find x?1II I think we can use Lambert BOSSES, help your boy!

x+ln(1x)=0.1614,findx?1IIIthinkwecanuseLambertBOSSES,helpyourboy!

  Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16      Pg 17   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com