Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 29

Question Number 169808    Answers: 0   Comments: 0

If the Real component of an analytic function is given by log_e (x^2 +y^2 )^(1/2) , find the function. Mastermind

IftheRealcomponentofananalyticfunctionisgivenbyloge(x2+y2)12,findthefunction.Mastermind

Question Number 169807    Answers: 0   Comments: 0

Given that U=x^4 −6x^2 y^2 +y^4 , find v and w such that w=u+iv is analytic Mastermind

GiventhatU=x46x2y2+y4,findvandwsuchthatw=u+ivisanalyticMastermind

Question Number 169658    Answers: 1   Comments: 2

Question Number 169612    Answers: 1   Comments: 0

Differentiate w.r.t ′x′ x^y +y^x =c Mastermind

Differentiatew.r.txxy+yx=cMastermind

Question Number 169447    Answers: 0   Comments: 0

The equation of the curve is given y=(x^3 /6)−((5x^2 )/2)−6x−1 1) Determine the critical points 2) Distinguish between these points 3) Determine the Maximum and minimum values 4) Determine the value of x and y at point of inflexion Mastermind

Theequationofthecurveisgiveny=x365x226x11)Determinethecriticalpoints2)Distinguishbetweenthesepoints3)DeterminetheMaximumandminimumvalues4)DeterminethevalueofxandyatpointofinflexionMastermind

Question Number 169396    Answers: 0   Comments: 14

(√x)+1=0 find x Mastermind

x+1=0findxMastermind

Question Number 169366    Answers: 0   Comments: 1

Differentiate from first principle y=log_x a Mastermind

Differentiatefromfirstprincipley=logxaMastermind

Question Number 169364    Answers: 1   Comments: 0

Show that the differential equation y′′ −4y′+4y=0 is satisfied when y=xe^(2x) Mastermind

Showthatthedifferentialequationy4y+4y=0issatisfiedwheny=xe2xMastermind

Question Number 169362    Answers: 2   Comments: 0

∫tan(2x+3)dx Mastermind

tan(2x+3)dxMastermind

Question Number 169358    Answers: 1   Comments: 0

Differentiate from first principle y=(1/(x^2 +5))

Differentiatefromfirstprincipley=1x2+5

Question Number 169347    Answers: 4   Comments: 0

Differentiate wrt x y=sin^(−1) (2x+1) Mastermind

Differentiatewrtxy=sin1(2x+1)Mastermind

Question Number 169346    Answers: 0   Comments: 0

Show that substituting y=vx, x+y(dy/dx)=x(dy/dx)−y to a separable equation for v and x and its solution is log_e (x^2 +y^2 )=2tan^(−1) ((y/x)) +C Mastermind

Showthatsubstitutingy=vx,x+ydydx=xdydxytoaseparableequationforvandxanditssolutionisloge(x2+y2)=2tan1(yx)+CMastermind

Question Number 169342    Answers: 1   Comments: 0

Obtain the differential equation associated with the primitive y = Ae^(2x) +Be^x +C Mastermind

Obtainthedifferentialequationassociatedwiththeprimitivey=Ae2x+Bex+CMastermind

Question Number 169333    Answers: 0   Comments: 3

Show that if y=C_1 sinx + C_2 x then (1+xcotx)(d^2 y/dx^2 )−x(dy/dx)+y=0 Mastermind

Showthatify=C1sinx+C2xthen(1+xcotx)d2ydx2xdydx+y=0Mastermind

Question Number 169315    Answers: 1   Comments: 1

lim_(x→∞) (((1+(√(x+2)))/(1−(√(x+2))))) Mastermind

limx(1+x+21x+2)Mastermind

Question Number 169305    Answers: 4   Comments: 2

Differentiate the following wrt x 1) y=x^x 2) y=sin^(−1) (2x+1) Mastermind

Differentiatethefollowingwrtx1)y=xx2)y=sin1(2x+1)Mastermind

Question Number 169303    Answers: 1   Comments: 1

Given that: x cos y=sin(x+y), find (dy/dx) Mastermind

Giventhat:xcosy=sin(x+y),finddydxMastermind

Question Number 169200    Answers: 2   Comments: 0

Question Number 169142    Answers: 2   Comments: 1

Question Number 168982    Answers: 1   Comments: 1

Question Number 168952    Answers: 1   Comments: 0

Question Number 168942    Answers: 0   Comments: 2

Question Number 168910    Answers: 0   Comments: 3

Resolve 1) (x−y)ydx−x^2 dy=0 2)(2x−y)dx+(4x−2y+3)dy=0

Resolve1)(xy)ydxx2dy=02)(2xy)dx+(4x2y+3)dy=0

Question Number 168909    Answers: 0   Comments: 1

Resolve (1−x^2 y)dx+(x^2 y−x^3 )dy=0 ; μ=μ(x)

Resolve(1x2y)dx+(x2yx3)dy=0;μ=μ(x)

Question Number 168868    Answers: 0   Comments: 0

Question Number 168842    Answers: 0   Comments: 0

  Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32      Pg 33   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com