Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 34

Question Number 159675    Answers: 1   Comments: 2

Question Number 159560    Answers: 1   Comments: 0

Resolve 1. u_(n+2) −2u_(n+1) +4u_n =3^n with u_o =1, u_1 =−2 2. u_n =u_(n−1) −u_(n−2) +2sin (((nΠ)/3)) with u_o =1, u_1 =2

Resolve1.un+22un+1+4un=3nwithuo=1,u1=22.un=un1un2+2sin(nΠ3)withuo=1,u1=2

Question Number 159475    Answers: 0   Comments: 0

Question Number 159425    Answers: 0   Comments: 0

Question Number 159403    Answers: 0   Comments: 1

U_(n+1) =(1/2)(u_n +(a/u_n )) with u_1 >0, a>0 Prove that (u_(n+1) /u_n )≤1

Un+1=12(un+aun)withu1>0,a>0Provethatun+1un1

Question Number 159309    Answers: 1   Comments: 0

Resolve I_n =∫_(−1) ^1 (1−x^2 )^n dx

ResolveIn=11(1x2)ndx

Question Number 159171    Answers: 1   Comments: 0

Prove by absurd that log 2 is the number irrational

Provebyabsurdthatlog2isthenumberirrational

Question Number 159123    Answers: 2   Comments: 0

Question Number 159078    Answers: 0   Comments: 0

1) Prove by recurrence that for n≥28, n!≥11^n 2) On subtract the limit of the suite (((n!)/(10^n ))) when n tended at +∞

1)Provebyrecurrencethatforn28,n!11n2)Onsubtractthelimitofthesuite(n!10n)whenntendedat+

Question Number 159016    Answers: 0   Comments: 0

Question Number 158984    Answers: 0   Comments: 0

1. Prove by recurrence that so n ∈ N and θ ∈ R (cos (nθ)+isin (nθ)=cos (nθ)+isin (nθ) 2. Prove that U_(n+1) =(1/5)(U_n ^2 +6) and U_1 =(5/2), is decrease

1.ProvebyrecurrencethatsonNandθR(cos(nθ)+isin(nθ)=cos(nθ)+isin(nθ)2.ProvethatUn+1=15(Un2+6)andU1=52,isdecrease

Question Number 158945    Answers: 2   Comments: 0

1) Prove by absurd that ((ln 2)/(ln 3)) is irrational 2) Prove by absurd that (√2)+(√(6 ))≤(√(15))

1)Provebyabsurdthatln2ln3isirrational2)Provebyabsurdthat2+615

Question Number 158858    Answers: 0   Comments: 0

I_n =∫_(−1) ^1 (1−x^2 )^n cos ((a/(2b))x)dx to integrating by piece for n≥2 proven (a^2 /(4b^2 ))I_(n ) =2n(2n−1)I_(n−1) −4(n−1)I_(n−2) proven by rearring that ((a/(2b)))^(2n+1) I_n =n![p((q/(2b)))sin ((a/(2b)))+Q((a/(2b)))cos ((a/(2b)))]

In=11(1x2)ncos(a2bx)dxtointegratingbypieceforn2provena24b2In=2n(2n1)In14(n1)In2provenbyrearringthat(a2b)2n+1In=n![p(q2b)sin(a2b)+Q(a2b)cos(a2b)]

Question Number 158855    Answers: 1   Comments: 0

Resolve the system d′ unknow (x, y,z) ∈ ⊂^3 x+y+z=1 x^2 +y^2 +z^2 =1 x^3 +y^3 +z^3 =−5

Resolvethesystemdunknow(x,y,z)3x+y+z=1x2+y2+z2=1x3+y3+z3=5

Question Number 158833    Answers: 1   Comments: 0

what is 1(1/2)%

whatis112%

Question Number 158827    Answers: 1   Comments: 0

resolve ∫ln (cos x)dx

resolveln(cosx)dx

Question Number 158675    Answers: 2   Comments: 1

Question Number 158477    Answers: 2   Comments: 0

I_(n ) =∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx , n≥0 prove that ∀ n≥0 (2n+1)I_n =(√2)−2nI_(n−1)

In=01x2n+11+x2dx,n0provethatn0(2n+1)In=22nIn1

Question Number 158419    Answers: 0   Comments: 0

Question Number 158421    Answers: 2   Comments: 0

Question Number 158340    Answers: 2   Comments: 0

1) Proven that by all n ∈ N^∗ 2!4!..(2n)!≥((n+1)!)^n 2) Proven by recurring that Σ_(p=1) ^n pp!=(n+1)!−1

1)ProventhatbyallnN2!4!..(2n)!((n+1)!)n2)Provenbyrecurringthatp=1npp!=(n+1)!1

Question Number 157778    Answers: 0   Comments: 0

find fourier′s serie of f(x)=x−[x]

findfouriersserieoff(x)=x[x]

Question Number 157645    Answers: 1   Comments: 0

what is the latest version of this app available i m having 2.265

whatisthelatestversionofthisappavailableimhaving2.265

Question Number 157156    Answers: 1   Comments: 0

{ ((a_1 =((√3)/2))),((a_(n+1) =4a_n ^3 −3a_n ; ∀n≥1)) :} a_n =?

{a1=32an+1=4an33an;n1an=?

Question Number 156522    Answers: 0   Comments: 1

Question Number 156373    Answers: 1   Comments: 0

A. lim_(x→+∞) Σ_(k=1) ^n [tan((kπ)/(2n))]

A.limx+nk=1[tankπ2n]

  Pg 29      Pg 30      Pg 31      Pg 32      Pg 33      Pg 34      Pg 35      Pg 36      Pg 37      Pg 38   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com