Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 44

Question Number 134259    Answers: 0   Comments: 0

(1/(998))+(1/(998.1995))+(1/(998.1995.2992))+(1/(998.1995.2992.3989))+...=(1/(997))

1998+1998.1995+1998.1995.2992+1998.1995.2992.3989+...=1997

Question Number 134251    Answers: 0   Comments: 1

Σ_(n=1) ^n nsin(n)

nn=1nsin(n)

Question Number 134135    Answers: 4   Comments: 0

If P = 2 + (1/P) then what is the answer of P^2 − (1/P^2 ) ?

IfP=2+1PthenwhatistheanswerofP21P2?

Question Number 134117    Answers: 1   Comments: 0

Question Number 134002    Answers: 1   Comments: 1

What will be the minimum area of a heptagon inscribed in an unit square?

Whatwillbetheminimumareaofaheptagoninscribedinanunitsquare?

Question Number 133988    Answers: 0   Comments: 2

(2+(π/e))(((17)/(16))+(π/(4e)))(((82)/(81))+(π/(9e)))(((257)/(256))+(π/(16e)))...

(2+πe)(1716+π4e)(8281+π9e)(257256+π16e)...

Question Number 133838    Answers: 1   Comments: 1

Question Number 133722    Answers: 2   Comments: 0

Question Number 133708    Answers: 1   Comments: 0

Σ_(n=1) ^∞ ((cos((π+e)n))/n^4 )

n=1cos((π+e)n)n4

Question Number 133692    Answers: 2   Comments: 1

((sin1)/e)−((sin(2))/(2e^2 ))+((sin(3))/(3e^3 ))−((sin(4))/(4e^4 ))+...=tan^(−1) (((sin(1))/(cos(1)+e)))

sin1esin(2)2e2+sin(3)3e3sin(4)4e4+...=tan1(sin(1)cos(1)+e)

Question Number 133590    Answers: 1   Comments: 0

A particle performs simple harmonic motion between two points A and B which are 10 m apart on a horizontal straight line. When the particle is 3 m away from the centre, O, of the line AB, its speed is 8 ms^(−1) . Find the least time required for the particle to move from B to the midpoint of OA.

AparticleperformssimpleharmonicmotionbetweentwopointsAandBwhichare10mapartonahorizontalstraightline.Whentheparticleis3mawayfromthecentre,O,ofthelineAB,itsspeedis8ms1.FindtheleasttimerequiredfortheparticletomovefromBtothemidpointofOA.

Question Number 133482    Answers: 0   Comments: 1

we consider that application n≥1 det : M_n (R)→R A det(A) 1−verify that ∀H∈M_n (R) and t∈R if A=I_n ⇒det(A+tH)=1+t.Tr(H)+○(t) 2−suppose that: A∈GL_n (R) prouve that the differntial of det in A is given by: H Tr[(com(A))^T H] Tr: trace of matrix (com(A))^T : transpose of the comatrix

weconsiderthatapplicationn1det:Mn(R)RAdet(A)1verifythatHMn(R)andtRifA=Indet(A+tH)=1+t.Tr(H)+(t)2supposethat:AGLn(R)prouvethatthedifferntialofdetinAisgivenby:HTr[(com(A))TH]Tr:traceofmatrix(com(A))T:transposeofthecomatrix

Question Number 133432    Answers: 1   Comments: 0

((sin(√π))/1^3 )+((sin(√(4π)))/2^3 )+((sin(√(9π)))/3^3 )+((sin(√(16π)))/4^3 )+....=((π(√π))/(12))(1−3(√π)+2π)

sinπ13+sin4π23+sin9π33+sin16π43+....=ππ12(13π+2π)

Question Number 133394    Answers: 0   Comments: 3

Question Number 133381    Answers: 0   Comments: 0

1+(1/1^2 )((1/(2.1!)))+(1/3^2 )(((1.3)/(2^2 .2!)))+(1/5^2 )(((1.3.5)/(2^3 .3!)))+...=(π/2)log(2)

1+112(12.1!)+132(1.322.2!)+152(1.3.523.3!)+...=π2log(2)

Question Number 133344    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((cos((n/π)))/n^4 )=−(1/(48π^4 ))+(1/(12))(1−(1/π^2 ))+(π^4 /(90))

n=1cos(nπ)n4=148π4+112(11π2)+π490

Question Number 133321    Answers: 2   Comments: 1

Find x : sin(3x)−sin(2x)−2sin(x) = (√3)cos(x)

Findx:sin(3x)sin(2x)2sin(x)=3cos(x)

Question Number 133264    Answers: 1   Comments: 1

Σ_(n=1) ^∞ ((sinn)/n^3 )

n=1sinnn3

Question Number 133346    Answers: 1   Comments: 0

Find modulus and argumen of z = (((1−i)^4 ((√3)+i)^7 )/((1+i(√2))^8 (−1−i(√3))^(12) ))

Findmodulusandargumenofz=(1i)4(3+i)7(1+i2)8(1i3)12

Question Number 133069    Answers: 0   Comments: 4

Question Number 133103    Answers: 1   Comments: 2

Question Number 132861    Answers: 0   Comments: 0

∫_0 ^∞ ((cos(xπt))/(cosh(πx)))e^(−π^2 x) dx

0cos(xπt)cosh(πx)eπ2xdx

Question Number 132827    Answers: 0   Comments: 2

Question Number 132715    Answers: 4   Comments: 0

(1/1^3 )−(1/2^3 )+(1/4^3 )−(1/5^3 )+(1/7^3 )−(1/8^3 )+...

113123+143153+173183+...

Question Number 132537    Answers: 1   Comments: 1

If f(x)=8x^(3 ) +3x then lim_(x→∞) (x^(1/3) /(f^(−1) (8x)−f^(−1) (x))) is

Iff(x)=8x3+3xthenlimxx1/3f1(8x)f1(x)is

Question Number 132434    Answers: 2   Comments: 0

Σ_(n=1) ^∞ ((cos(n))/n^2 )

n=1cos(n)n2

  Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com