Question and Answers Forum |
OthersQuestion and Answers: Page 68 |
if α^(13) =1 and α≠1,find the quadratic equation whose roots are (α+α^3 +α^4 +α^(−4) +α^(−3) +α^(−1) ) and (α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−6) ) |
f(x)=(x)^(1/3) is there an inflection point when x=0 |
α,β and γ are the roots of x^3 −9x+9=0 find the value of (1) α^(−3) +β^(−3) +γ^(−3) (2) α^(−5) +β^(−5) +γ^(−5) |
![]() |
a_(n+1) =(2n+1)a_n a_1 =1 a_n =? |
![]() |
given that α and β are roots of the equation aχ^2 +bχ+c=0. show that λμb^2 =ac(λ+μ)^(2 ) where (α/β)=(λ/μ) |
determinant ((x,7),(9,(8−x)))= determinant ((7,0,(−3)),((−5),x,(−6)),((−3),(−5),(x−9))) |
∫x(√(3x^3 +7)) dx |
given the polar equation r = a^2 sin2θ show the tangents at the poles of this polar equation is. θ = {(π/4),((3π)/4),((5π)/4),((7π)/4)} |
bhz |
sinh^(−1) [ln(x + (√(x^2 + 1)) )] = ? |
∫ e^(∣x∣) dx = ??? |
find the gcd(2467, 1367) |
expand , ln(1 + sin x) right up to the term in x^3 |
∫_0 ^1 (−1)^(⌊(1/x)⌋) dx |
![]() |
solvethefollowingequation 5^(2x+y) =625and2^(4x∤2y) =(1/6) |
simplifyκgivingκyourκanswerκinκindexκform (√((ac^2 )/(9a^2 c^4 ))) |
Prove that for all complex such as ∣z∣<1= Σ_(n=1) ^∞ (z^n /((z^n −1)^2 )) +Σ_(n=1) ^∞ ((nz^n )/(z^n −1)) = 0 |
Prove that Σ_(p≥1,q≥1) (1/(pq(p+q−1))) =(π^2 /3) |
Let x∈]0;1[ Prove that Σ_(n=1) ^∞ (x^n /(1+x^n )) +Σ_(n=1) ^∞ (((−x)^n )/(1−x^n )) = 0 |
f(x) = f(x+((3π)/8)) , ∀x∈ R if ∫_0 ^(3π/8) f(x) dx = t , then ∫_π ^(5π/2) f(x−π) dx = A. 2t B. 3t C. 4t D. 6t E. 8t |
Find the area bounded by 3x+4y=12 and the coordinate axes? |
The Area of the triangle is 9x^2 −12x+4. compute its perimeter? |
![]() |