Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 68

Question Number 90947    Answers: 0   Comments: 0

if α^(13) =1 and α≠1,find the quadratic equation whose roots are (α+α^3 +α^4 +α^(−4) +α^(−3) +α^(−1) ) and (α^2 +α^5 +α^6 +α^(−6) +α^(−5) +α^(−6) )

ifα13=1andα1,findthequadraticequationwhoserootsare(α+α3+α4+α4+α3+α1)and(α2+α5+α6+α6+α5+α6)

Question Number 90940    Answers: 1   Comments: 0

f(x)=(x)^(1/3) is there an inflection point when x=0

f(x)=x3isthereaninflectionpointwhenx=0

Question Number 90709    Answers: 0   Comments: 2

α,β and γ are the roots of x^3 −9x+9=0 find the value of (1) α^(−3) +β^(−3) +γ^(−3) (2) α^(−5) +β^(−5) +γ^(−5)

α,βandγaretherootsofx39x+9=0findthevalueof(1)α3+β3+γ3(2)α5+β5+γ5

Question Number 90692    Answers: 1   Comments: 2

Question Number 92777    Answers: 1   Comments: 2

a_(n+1) =(2n+1)a_n a_1 =1 a_n =?

an+1=(2n+1)ana1=1an=?

Question Number 90647    Answers: 0   Comments: 14

Question Number 90581    Answers: 1   Comments: 0

given that α and β are roots of the equation aχ^2 +bχ+c=0. show that λμb^2 =ac(λ+μ)^(2 ) where (α/β)=(λ/μ)

giventhatαandβarerootsoftheequationaχ2+bχ+c=0.showthatλμb2=ac(λ+μ)2whereαβ=λμ

Question Number 90316    Answers: 1   Comments: 2

determinant ((x,7),(9,(8−x)))= determinant ((7,0,(−3)),((−5),x,(−6)),((−3),(−5),(x−9)))

|x798x|=|7035x635x9|

Question Number 90138    Answers: 0   Comments: 2

∫x(√(3x^3 +7)) dx

x3x3+7dx

Question Number 90099    Answers: 0   Comments: 2

given the polar equation r = a^2 sin2θ show the tangents at the poles of this polar equation is. θ = {(π/4),((3π)/4),((5π)/4),((7π)/4)}

giventhepolarequationr=a2sin2θshowthetangentsatthepolesofthispolarequationis.θ={π4,3π4,5π4,7π4}

Question Number 90046    Answers: 0   Comments: 0

bhz

bhz

Question Number 90024    Answers: 0   Comments: 2

sinh^(−1) [ln(x + (√(x^2 + 1)) )] = ?

sinh1[ln(x+x2+1)]=?

Question Number 90023    Answers: 1   Comments: 0

∫ e^(∣x∣) dx = ???

exdx=???

Question Number 90019    Answers: 1   Comments: 0

find the gcd(2467, 1367)

findthegcd(2467,1367)

Question Number 90018    Answers: 1   Comments: 2

expand , ln(1 + sin x) right up to the term in x^3

expand,ln(1+sinx)rightuptotheterminx3

Question Number 89986    Answers: 0   Comments: 3

∫_0 ^1 (−1)^(⌊(1/x)⌋) dx

01(1)1xdx

Question Number 89980    Answers: 0   Comments: 2

Question Number 89953    Answers: 0   Comments: 1

solvethefollowingequation 5^(2x+y) =625and2^(4x∤2y) =(1/6)

solvethefollowingequation52x+y=625and24x2y=16

Question Number 89956    Answers: 0   Comments: 1

simplifyκgivingκyourκanswerκinκindexκform (√((ac^2 )/(9a^2 c^4 )))

simplifyκgivingκyourκanswerκinκindexκformac29a2c4

Question Number 89937    Answers: 0   Comments: 1

Prove that for all complex such as ∣z∣<1= Σ_(n=1) ^∞ (z^n /((z^n −1)^2 )) +Σ_(n=1) ^∞ ((nz^n )/(z^n −1)) = 0

Provethatforallcomplexsuchasz∣<1=n=1zn(zn1)2+n=1nznzn1=0

Question Number 89936    Answers: 1   Comments: 0

Prove that Σ_(p≥1,q≥1) (1/(pq(p+q−1))) =(π^2 /3)

Provethatp1,q11pq(p+q1)=π23

Question Number 89934    Answers: 0   Comments: 0

Let x∈]0;1[ Prove that Σ_(n=1) ^∞ (x^n /(1+x^n )) +Σ_(n=1) ^∞ (((−x)^n )/(1−x^n )) = 0

Letx]0;1[Provethatn=1xn1+xn+n=1(x)n1xn=0

Question Number 89745    Answers: 0   Comments: 2

f(x) = f(x+((3π)/8)) , ∀x∈ R if ∫_0 ^(3π/8) f(x) dx = t , then ∫_π ^(5π/2) f(x−π) dx = A. 2t B. 3t C. 4t D. 6t E. 8t

f(x)=f(x+3π8),xRif3π/80f(x)dx=t,then5π/2πf(xπ)dx=A.2tB.3tC.4tD.6tE.8t

Question Number 89728    Answers: 1   Comments: 0

Find the area bounded by 3x+4y=12 and the coordinate axes?

Findtheareaboundedby3x+4y=12andthecoordinateaxes?

Question Number 89661    Answers: 0   Comments: 3

The Area of the triangle is 9x^2 −12x+4. compute its perimeter?

TheAreaofthetriangleis9x212x+4.computeitsperimeter?

Question Number 89626    Answers: 0   Comments: 1

  Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com