Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 70

Question Number 88263    Answers: 1   Comments: 1

prove that ∣((e^z −e^(−z) )/2)∣^2 +cos^2 y=sinh^2 x when z=x+iy

provethatezez22+cos2y=sinh2xwhenz=x+iy

Question Number 88236    Answers: 1   Comments: 0

Evaluate ∫(((27)/(x^3 −6)))^(1/3) dx

Evaluate27x363dx

Question Number 88235    Answers: 0   Comments: 1

find a maclaurine series solution to the differential equation up to the term in x^4 . (dy/dx) − x = xy if y = 1 when x = 0.

findamaclaurineseriessolutiontothedifferentialequationuptotheterminx4.dydxx=xyify=1whenx=0.

Question Number 88169    Answers: 1   Comments: 2

find Laplace transform t^3 . cos 4t

findLaplacetransformt3.cos4t

Question Number 87870    Answers: 0   Comments: 0

x amd y are imtegers. how many possible solitions do the eqiation has x^2 −10y^2 = ±1

xamdyareimtegers.howmanypossiblesolitionsdotheeqiationhasx210y2=±1

Question Number 87862    Answers: 0   Comments: 3

Evaluate ∫_(−1) ^1 (1/(x−1)) dx

Evaluate111x1dx

Question Number 87861    Answers: 0   Comments: 4

∫_0 ^(π/4) tanh 2x dx

π40tanh2xdx

Question Number 87754    Answers: 0   Comments: 0

Given that forces F_(1 ) and F_2 position vectors r_(1 ) and r_2 F_1 = (2i + 3j)N r_1 = i + 2j F_2 = (αi−7j) N r_2 = 3i + 4j Given that these system of forces form a couple find the value of α.

GiventhatforcesF1andF2positionvectorsr1andr2F1=(2i+3j)Nr1=i+2jF2=(αi7j)Nr2=3i+4jGiventhatthesesystemofforcesformacouplefindthevalueofα.

Question Number 87752    Answers: 1   Comments: 0

A particle exhibits simple hamornic motion such that (d^2 x/dt^2 ) + 4x = 0 Calculate the period of the ocsillation

Aparticleexhibitssimplehamornicmotionsuchthatd2xdt2+4x=0Calculatetheperiodoftheocsillation

Question Number 87751    Answers: 0   Comments: 2

find in the form y= f(x) the general solution of the differentail equation (d^2 y/dx^2 ) −(dy/dx)−6y = e^(3x)

findintheformy=f(x)thegeneralsolutionofthedifferentailequationd2ydx2dydx6y=e3x

Question Number 87550    Answers: 0   Comments: 2

(1/(2e^(−x) −1)) > (2/(e^(−x) −2))

12ex1>2ex2

Question Number 87536    Answers: 1   Comments: 0

solve ∣2x−1∣=3⌊x⌋+2{x}

solve2x1∣=3x+2{x}

Question Number 87497    Answers: 0   Comments: 0

A complex number z is defined by z = (1/2)(cos θ + isin θ),such that z^n = (1/2^n ) (cos nθ + isin nθ) Using De Moivre′s theorem,or otherwise, show that (i) Σ_(r=0) ^∞ (1/4^r ) sin 2rθ is a convergent geometic progression. (ii) Σ_(r=0) ^∞ (1/4^r ) sin 2r = ((14 sin 2θ)/(17−16cos 2θ))

Acomplexnumberzisdefinedbyz=12(cosθ+isinθ),suchthatzn=12n(cosnθ+isinnθ)UsingDeMoivrestheorem,orotherwise,showthat(i)r=014rsin2rθisaconvergentgeometicprogression.(ii)r=014rsin2r=14sin2θ1716cos2θ

Question Number 87308    Answers: 0   Comments: 0

A sequence (U_n ) is defined reculsively as U_o = (1/2) and U_(n+1) = (2/(1 + U_n )) for n ∈ N a) Show by mathematical induction that all terms in the sequence are positive. b) Given that the sequence (U_n ) is convergent, show that the limit,l, is a solution to the equation x^2 + x−2 = 0. Hence find l c) Given that (V_n ) is a sequence of general term such that V_n = ((U_n −1)/(U_n +2)) , ∀ n ∈ N. show that (V_n ) is convergent and determine its limit. hence deduce the convergence of the sequence (U_n ). Please recommend me textbooks for this topic even youtube vids please

Asequence(Un)isdefinedreculsivelyasUo=12andUn+1=21+UnfornNa)Showbymathematicalinductionthatalltermsinthesequencearepositive.b)Giventhatthesequence(Un)isconvergent,showthatthelimit,l,isasolutiontotheequationx2+x2=0.Hencefindlc)Giventhat(Vn)isasequenceofgeneraltermsuchthatVn=Un1Un+2,nN.showthat(Vn)isconvergentanddetermineitslimit.hencededucetheconvergenceofthesequence(Un).Pleaserecommendmetextbooksforthistopicevenyoutubevidsplease

Question Number 87069    Answers: 0   Comments: 1

((cos x−sin x)/(√(1+sin 2x))) = sec 2x−tan 2x prove it

cosxsinx1+sin2x=sec2xtan2xproveit

Question Number 87031    Answers: 1   Comments: 1

Question Number 86886    Answers: 0   Comments: 1

Question Number 86873    Answers: 0   Comments: 0

A company paid a total dividend of K12 600.00 at the end of 2018 on 6000 shares. If Freddy owned 200 shares in the company, how much was paid out in dividents to him?

AcompanypaidatotaldividendofK12600.00attheendof2018on6000shares.IfFreddyowned200sharesinthecompany,howmuchwaspaidoutindividentstohim?

Question Number 87017    Answers: 1   Comments: 0

Question Number 86849    Answers: 0   Comments: 0

If z,w ε C and ∣z∣>1, ∣w∣<1 so ∣((z−w)/(1−z^− w))∣>1, demostrate thr veracity of the statment. (V or F)

Ifz,wϵCandz∣>1,w∣<1sozw1zw∣>1,demostratethrveracityofthestatment.(VorF)

Question Number 86708    Answers: 1   Comments: 0

∫x (√((√2) x−(√(2x^2 −1)))) dx

x2x2x21dx

Question Number 86598    Answers: 0   Comments: 1

write out the general summation formula for the maclaurin series expansion for (1/2) (cos x + cosh x)

writeoutthegeneralsummationformulaforthemaclaurinseriesexpansionfor12(cosx+coshx)

Question Number 86461    Answers: 3   Comments: 0

Use exponential representation of sin θ and cos θ to show that a) sin^2 θ + cos^2 θ = 1 b) cos^2 θ − sin^2 θ = cos2θ c) 2 sinθ cosθ = 2sin2θ.

Useexponentialrepresentationofsinθandcosθtoshowthata)sin2θ+cos2θ=1b)cos2θsin2θ=cos2θc)2sinθcosθ=2sin2θ.

Question Number 86365    Answers: 0   Comments: 0

I think it will be ∫_0 ^(π/4) (dx/(√(1+tanx))) ≈∫_0 ^(π/4) (dx/(√(1+x))) =(𝛑/4)−(1/2).(1/2).((𝛑/4))^2 +((1.3)/(2.4)).(1/3).((𝛑/4))^3 −((1.3.5)/(2.4.6)).(1/4)((𝛑/4))^4 +....

Ithinkitwillbe0π4dx1+tanx0π4dx1+x=π412.12.(π4)2+1.32.4.13.(π4)31.3.52.4.6.14(π4)4+....

Question Number 86356    Answers: 1   Comments: 1

Question Number 86198    Answers: 0   Comments: 7

any methods to sketch these curves r = a(1−cosθ) r= a + b cosθ a>b r= a + bcosθ a<b

anymethodstosketchthesecurvesr=a(1cosθ)r=a+bcosθa>br=a+bcosθa<b

  Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com