Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 72

Question Number 84814    Answers: 0   Comments: 1

1.Finx

1.Finx

Question Number 84740    Answers: 1   Comments: 5

find the remainder when −18 is divided by 4

findtheremainderwhen18isdividedby4

Question Number 84739    Answers: 1   Comments: 0

find the unit digit in the number 15^(1789) + 17^(1789) + 19^(1789)

findtheunitdigitinthenumber151789+171789+191789

Question Number 84680    Answers: 1   Comments: 0

show that ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((log(xyz))/((1+x^2 )(1+y^2 )(1+z^2 ))) dx dy dz=((−3π^2 G)/(16))

showthat010101log(xyz)(1+x2)(1+y2)(1+z2)dxdydz=3π2G16

Question Number 84637    Answers: 0   Comments: 5

prove that lim_(x→∞) (1 + (1/x))^x =e

provethatlimx(1+1x)x=e

Question Number 84607    Answers: 3   Comments: 1

1)∫(√(sin(x))) dx 2)∫cos(x^2 )dx

1)sin(x)dx2)cos(x2)dx

Question Number 84510    Answers: 2   Comments: 0

Question Number 84382    Answers: 0   Comments: 0

∫((cos(2x) sin(x))/(cos(x)+sin(2x))) dx

cos(2x)sin(x)cos(x)+sin(2x)dx

Question Number 84359    Answers: 0   Comments: 1

Question Number 84341    Answers: 0   Comments: 1

Find the centre of symmetry of the curve: y = (1/(x + 2))

Findthecentreofsymmetryofthecurve:y=1x+2

Question Number 84323    Answers: 1   Comments: 0

A particle moving in a straight line OX has a displacement x from O at time t where x satisfies the equation (d^2 x/(dt^2 )) + 2(dx/dt) + 3x = 0 the damping factor for the motion is [A] e^(−1) [B] e^(−2t) [C] e^(−3t) [D] e^(−5t)

AparticlemovinginastraightlineOXhasadisplacementxfromOattimetwherexsatisfiestheequationd2xdt2+2dxdt+3x=0thedampingfactorforthemotionis[A]e1[B]e2t[C]e3t[D]e5t

Question Number 84316    Answers: 1   Comments: 1

Which one of the following sets of vectors is a basis for R^2 [A] { ((1),((−2)) ) , (((−3)),(6) )} [B] { ((1),(1) ) , ((2),(2) )} [C] { ((2),(1) ) , ((0),(1) )} [D] { ((1),(2) ) , ((4),(8) ) }

WhichoneofthefollowingsetsofvectorsisabasisforR2[A]{(12),(36)}[B]{(11),(22)}[C]{(21),(01)}[D]{(12),(48)}

Question Number 84242    Answers: 1   Comments: 1

∫_0 ^(ln2) (1/(cosh(x + ln4)))dx

ln201cosh(x+ln4)dx

Question Number 84263    Answers: 1   Comments: 0

Using the approximation h((dy/dx))_n ≈ y_(n+1) −y_n and that (dy/dx) = 1, y =2 when x = 0 . then , y_1 = [A] h−2 [B] h + 2 [C] h−1 [D] h + 1

Usingtheapproximationh(dydx)nyn+1ynandthatdydx=1,y=2whenx=0.then,y1=[A]h2[B]h+2[C]h1[D]h+1

Question Number 84231    Answers: 1   Comments: 0

A compound pendulum oscillates though a small angle θ about its equilibrium position such that 10a((dθ/dt))^2 = 4g cos θ , a >0 . its period is [A] 2π(√(((5a)/(4g)) )) [B] ((2π)/5)(√(a/g)) [C] 2π(√(((2g)/(5a)) )) [D] 2π(√((5a)/g))

Acompoundpendulumoscillatesthoughasmallangleθaboutitsequilibriumpositionsuchthat10a(dθdt)2=4gcosθ,a>0.itsperiodis[A]2π5a4g[B]2π5ag[C]2π2g5a[D]2π5ag

Question Number 84220    Answers: 1   Comments: 1

find the maximum value of (2/(3cosh2x +2))

findthemaximumvalueof23cosh2x+2

Question Number 84219    Answers: 1   Comments: 0

∫_(−1) ^1 e^(∣x∣) dx =?

11exdx=?

Question Number 84218    Answers: 4   Comments: 1

find the distance between the planes 2x−y−z = 24 and 2x−y−z = 36

findthedistancebetweentheplanes2xyz=24and2xyz=36

Question Number 84215    Answers: 1   Comments: 0

hi show that the following sequence is limited: U_n =((3n+2)/(2n+1)) precise the upper and lower.

hishowthatthefollowingsequenceislimited:Un=3n+22n+1precisetheupperandlower.

Question Number 84134    Answers: 1   Comments: 0

find the general solution of the equation 2sin 3θ = sin 2θ

findthegeneralsolutionoftheequation2sin3θ=sin2θ

Question Number 84121    Answers: 0   Comments: 4

given that g(x) = { ((x + 2 , if 0 ≤ x < 2)),((x^2 , if 2 ≤ x < 4)) :} is periodic of period 4. sketch the curve for g(x) in the interval 0≤ x < 8 evaluate g(−6).

giventhatg(x)={x+2,if0x<2x2,if2x<4isperiodicofperiod4.sketchthecurveforg(x)intheinterval0x<8evaluateg(6).

Question Number 84021    Answers: 3   Comments: 1

Question Number 83991    Answers: 0   Comments: 1

Find the locus of the points represented by the complex number ,z, such that 2∣z−3∣ = ∣z−6i∣

Findthelocusofthepointsrepresentedbythecomplexnumber,z,suchthat2z3=z6i

Question Number 83989    Answers: 0   Comments: 3

find a. ∫cos 3x cos 5x dx b. ∫xln 2x dx

finda.cos3xcos5xdxb.xln2xdx

Question Number 83966    Answers: 2   Comments: 0

prove that for any complex number z, if ∣z∣ < 1, then Re(z + 1) > 0

provethatforanycomplexnumberz,ifz<1,thenRe(z+1)>0

Question Number 83965    Answers: 0   Comments: 3

prove or disprove(with counter−example) that a) For all two dimensional vectors a,b,c, a.b = a. c ⇒ b=c. b) For all positive real numbers a,b. ((a +b)/2) ≥ (√(ab))

proveordisprove(withcounterexample)thata)Foralltwodimensionalvectorsa,b,c,a.b=a.cb=c.b)Forallpositiverealnumbersa,b.a+b2ab

  Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com