Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 73

Question Number 83964    Answers: 1   Comments: 0

The graph of y = ((a + bx)/((x−1)(x−4))) has a turning point at P(2,−1). Find the value of a and b and hence,sketch the curve y = f(x) showing clearly the turning points, asympototes and intercept(s) with the axes.

Thegraphofy=a+bx(x1)(x4)hasaturningpointatP(2,1).Findthevalueofaandbandhence,sketchthecurvey=f(x)showingclearlytheturningpoints,asympototesandintercept(s)withtheaxes.

Question Number 83861    Answers: 0   Comments: 3

An object of mass 7kg is sliding down a frictionless 20m inclined plane. Calculate the speed of the object when it reaches the ground.

Anobjectofmass7kgisslidingdownafrictionless20minclinedplane.Calculatethespeedoftheobjectwhenitreachestheground.

Question Number 83850    Answers: 2   Comments: 1

Find the maximum value of the function f, defined by f(x) = (x/(1+ x^2 )) , x∈R

Findthemaximumvalueofthefunctionf,definedbyf(x)=x1+x2,xR

Question Number 83849    Answers: 0   Comments: 3

Gven that y = e^(−x) sinbx ,where b is a constant,show that (d^2 y/dx^2 ) + 2(dy/dx) + (1 + b^2 )y = 0.

Gventhaty=exsinbx,wherebisaconstant,showthatd2ydx2+2dydx+(1+b2)y=0.

Question Number 83719    Answers: 2   Comments: 1

Question. ^(Show that ∫_0 ^(Π/2) ((cosx)/(3+cos^2 x))dx=(1/4)ln3)

Question.Showthat0Π2cosx3+cos2xdx=14ln3

Question Number 83604    Answers: 0   Comments: 7

need help. When typing with microsoft word i face some difficulties like when typing lim_(x→0) f(x) it turns to lim_(x→0) f(x) and Σ_(r=0) ^n a_n turns to Σ_(r=0) ^n a_n please how do i rectify this problem? and any suggestion on a better application to type my maths papers? thanks in advance.

needhelp.Whentypingwithmicrosoftwordifacesomedifficultieslikewhentypinglimx0f(x)itturnstolimx0f(x)andnr=0anturnstor=0nanpleasehowdoirectifythisproblem?andanysuggestiononabetterapplicationtotypemymathspapers?thanksinadvance.

Question Number 83381    Answers: 0   Comments: 0

Given that the function f(x) = x^3 is differentiable in the interval (−2,2) us the mean value theorem to find the value of x for which the tangent to the curve is parrallel to the chord through the points (−2,8) and (2,8).

Giventhatthefunctionf(x)=x3isdifferentiableintheinterval(2,2)usthemeanvaluetheoremtofindthevalueofxforwhichthetangenttothecurveisparralleltothechordthroughthepoints(2,8)and(2,8).

Question Number 83297    Answers: 1   Comments: 1

Write down a series expansion for ln [((1−2x)/((1+2x)^2 ))] in ascending powers of x up to and including the term in x^4 . if x is small that terms in x^2 and higher powers are negleted show that (((1−2x)/(1+2x)))^(1/(2x)) ≅ (1 + x)e^(−3)

Writedownaseriesexpansionforln[12x(1+2x)2]inascendingpowersofxuptoandincludingtheterminx4.ifxissmallthattermsinx2andhigherpowersarenegletedshowthat(12x1+2x)12x(1+x)e3

Question Number 83296    Answers: 0   Comments: 2

Obtain a maclaurin expansion for a) e^(cos x ) b) e^(cos^2 x)

Obtainamaclaurinexpansionfora)ecosxb)ecos2x

Question Number 83205    Answers: 0   Comments: 2

∫_0 ^(ln2) (1/(cosh(x + ln4)))dx =

0ln21cosh(x+ln4)dx=

Question Number 83202    Answers: 0   Comments: 4

find the first 4 terms in the maclaurin[ series expansion for ln (1 + 3x) hence show that if x^2 and higher powers of x are negleted, then (1 + 3x)^(3/x) = e^6 (1 −9x)

findthefirst4termsinthemaclaurin[seriesexpansionforln(1+3x)henceshowthatifx2andhigherpowersofxarenegleted,then(1+3x)3x=e6(19x)

Question Number 82929    Answers: 2   Comments: 0

if 2B+A=45° show that; tan B= ((1−2tanA−tan^2 A)/(1+2tanA−tan^2 A))

if2B+A=45°showthat;tanB=12tanAtan2A1+2tanAtan2A

Question Number 82886    Answers: 0   Comments: 2

prove (tanx+cot^2 x)^2 =sex^2 x+cosec^2 x

prove(tanx+cot2x)2=sex2x+cosec2x

Question Number 82867    Answers: 0   Comments: 3

hello prove that ∫_0 ^(+∞) sin(x^4 )dx=sin((π/8))∫_0 ^(+∞) e^(−x^4 ) dx? verry nice day Good Bless You

helloprovethat0+sin(x4)dx=sin(π8)0+ex4dx?verrynicedayGoodBlessYou

Question Number 82729    Answers: 1   Comments: 2

Question Number 82721    Answers: 1   Comments: 2

show that ∫xe^(−x^6 ) sin(x^3 ) dx=((Γ((5/6)))/3) 1F1[(5/6);(3/2);((−1)/4)]

showthatxex6sin(x3)dx=Γ(56)31F1[56;32;14]

Question Number 82639    Answers: 0   Comments: 3

Question Number 82616    Answers: 0   Comments: 0

Find the normalization constant ψ_((φ,θ)) =Ne^(iφ) sinθ

Findthenormalizationconstantψ(ϕ,θ)=Neiϕsinθ

Question Number 82583    Answers: 0   Comments: 0

Question Number 82564    Answers: 0   Comments: 0

Question Number 82497    Answers: 0   Comments: 0

Question Number 82415    Answers: 0   Comments: 1

Question Number 82387    Answers: 0   Comments: 0

Question Number 82386    Answers: 0   Comments: 0

Question Number 82358    Answers: 0   Comments: 3

Show that: a_n = − rω^2 , show clearly how you arrive at your result.

Showthat:an=rω2,showclearlyhowyouarriveatyourresult.

Question Number 82285    Answers: 0   Comments: 0

  Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com