Question and Answers Forum

All Questions   Topic List

OthersQuestion and Answers: Page 77

Question Number 77186    Answers: 1   Comments: 0

given { ((3^y −1= (6/2^x ))),(((3)^(y/x) = 2 )) :} find (1/x)+(1/y).

given{3y1=62x(3)yx=2find1x+1y.

Question Number 77180    Answers: 1   Comments: 0

given a quadratic equation 3x^2 −x+(t^2 −4t+3)=0 has roots sin α and cos α. find the value (√(t^2 −4t+5)) .

givenaquadraticequation3x2x+(t24t+3)=0hasrootssinαandcosα.findthevaluet24t+5.

Question Number 77160    Answers: 1   Comments: 1

Question Number 77149    Answers: 0   Comments: 2

Any reference to a book or video that coould help me solve Differential equations? please help

AnyreferencetoabookorvideothatcoouldhelpmesolveDifferentialequations?pleasehelp

Question Number 77147    Answers: 0   Comments: 1

Σ_(r=1) ^∞ (1/r^k ) is divergent for: A. k ≤ 1 B. k > 2 C. k ≤ 2 D. 0 ≤ k < 2

r=11rkisdivergentfor:A.k1B.k>2C.k2D.0k<2

Question Number 76973    Answers: 2   Comments: 0

In a ABC triangle the side a=6 and c^2 −b^2 =66. Calculate the projections of sides b and c on a.

InaABCtrianglethesidea=6andc2b2=66.Calculatetheprojectionsofsidesbandcona.

Question Number 76922    Answers: 0   Comments: 1

Question Number 76819    Answers: 0   Comments: 4

one of the foci of the ellipse (x^2 /9) + (y^2 /4) = 1 is A. (4,0) B. (9,0) C. (5,0) D. ((√5) , 0)

oneofthefocioftheellipsex29+y24=1isA.(4,0)B.(9,0)C.(5,0)D.(5,0)

Question Number 76817    Answers: 0   Comments: 2

A compound pendulum ocsillates through angles θ about its equilibrium position such that 8aθ^2 = 9g cosθ, a>0. its period is A. 2π(√((8a)/(9g))) B. ((3π)/8)(√(a/g)) C. 2π(√((9g)/(8a))) D. ((8π)/3)(√(a/g))

Acompoundpendulumocsillatesthroughanglesθaboutitsequilibriumpositionsuchthat8aθ2=9gcosθ,a>0.itsperiodisA.2π8a9gB.3π8agC.2π9g8aD.8π3ag

Question Number 76813    Answers: 1   Comments: 7

Σ_(k=1) ^(2n) (−1)^k = A. ∞ B. 1 C. −1 D. 0

2nk=1(1)k=A.B.1C.1D.0

Question Number 76811    Answers: 0   Comments: 2

The eccentricity of the hyperbola (x^2 /(64)) − (y^2 /(36)) = 1 is A. (5/4) B. (3/4) C. (4/5) D. (4/3)

Theeccentricityofthehyperbolax264y236=1isA.54B.34C.45D.43

Question Number 76809    Answers: 0   Comments: 3

Question Number 76802    Answers: 0   Comments: 0

3)αparticle of energy 5MeV pass through an ionisation chamber at the rate of 10 pwe second . Assum that all the energy is used in producing ion pairs,calculate the current produced. (35MeV is required for producing an ion pair and e=1.6×10^(-19) C) solution: Energy of α particles=5×10^6 eV Energy required for producing one ion pair=35eV No.of ion pairs produced by one α particle =((5×10^6 )/(35))=1.426×10^5 since 10 particle enter the chamber in one second =1.426×10^5 ×10=1.426×10^6 charge on dach ion=1.6×10^(-19) C Current=(1.426×10^6 )×(1.6×10^(-19) )C/s =2.287×10^(-13) A.

3)αparticleofenergy5MeVpassthroughanionisationchamberattherateof10pwesecond.Assumthatalltheenergyisusedinproducingionpairs,calculatethecurrentproduced.(35MeVisrequiredforproducinganionpairande=1.6×1019C)solution:Energyofαparticles=5×106eVEnergyrequiredforproducingoneionpair=35eVNo.ofionpairsproducedbyoneαparticle=5×10635=1.426×105since10particleenterthechamberinonesecond=1.426×105×10=1.426×106chargeondachion=1.6×1019CCurrent=(1.426×106)×(1.6×1019)C/s=2.287×1013A.

Question Number 76726    Answers: 3   Comments: 0

var(x) = 2 then var(2x −3)=? E(x) = 2 then E(2x −3) = ?

var(x)=2thenvar(2x3)=?E(x)=2thenE(2x3)=?

Question Number 76724    Answers: 1   Comments: 1

∫_0 ^3 ∣x^2 −1∣ dx ≡

03x21dx

Question Number 76723    Answers: 0   Comments: 0

the maclaurin expansion of ln (3 + 4x) is valid for A) −(3/4) ≤ x< (3/4) B) −(3/4)< x ≤ (3/4) C) −(1/4)< x ≤ (1/4) D) −(3/4)< x < (3/4)

themaclaurinexpansionofln(3+4x)isvalidforA)34x<34B)34<x34C)14<x14D)34<x<34

Question Number 76680    Answers: 0   Comments: 4

prove that: ∫_0 ^1 (1−x^7 )^(1/3) dx=∫_0 ^1 (1−x^3 )^(1/7) dx

provethat:01(1x7)13dx=01(1x3)17dx

Question Number 76579    Answers: 1   Comments: 0

A uniform ladder of weight W and length 2a rest in limiting equilibrium with one end on a rough horizontal ground and the other end on a rough vertical wall. The coefficient of friction between the ladder and the ground and between the ladder and the wall are respectively μ and λ . If the ladder makes an angle θ with the ground where tan θ = (5/(12)), a) show that 5μ + 6λμ − 6 = 0. b) find the value of λ and μ given that λμ =(1/2).

AuniformladderofweightWandlength2arestinlimitingequilibriumwithoneendonaroughhorizontalgroundandtheotherendonaroughverticalwall.Thecoefficientoffrictionbetweentheladderandthegroundandbetweentheladderandthewallarerespectivelyμandλ.Iftheladdermakesanangleθwiththegroundwheretanθ=512,a)showthat5μ+6λμ6=0.b)findthevalueofλandμgiventhatλμ=12.

Question Number 76577    Answers: 1   Comments: 0

given a sequence defined by {((3n)/(2n+ 5))}_(n=1) ^∞ , does this sequence converge or diverge, explain

givenasequencedefinedby{3n2n+5}n=1,doesthissequenceconvergeordiverge,explain

Question Number 76404    Answers: 0   Comments: 2

Hello have nice end of year good bless you all i respond note in y re message becsuse i have so many problemes that mack me feel no pleasur any more to do somthing i think its importante to say it i will back Soon i hop so Sorry for my English

HellohaveniceendofyeargoodblessyouallirespondnoteinyremessagebecsuseihavesomanyproblemesthatmackmefeelnopleasuranymoretodosomthingithinkitsimportantetosayitiwillbackSoonihopsoSorryformyEnglish

Question Number 76384    Answers: 0   Comments: 1

Question Number 76368    Answers: 3   Comments: 5

prove that 1. Σ_(r=1) ^n r = (1/2)n(n+1) 2. Σ_(r=1) ^n r^2 = (1/6)n(n+1)(2n + 1) 3. Σ_(r=1) ^n r^3 = (1/4)n^2 (n + 1)^2

provethat1.nr=1r=12n(n+1)2.nr=1r2=16n(n+1)(2n+1)3.nr=1r3=14n2(n+1)2

Question Number 76367    Answers: 0   Comments: 4

prove that Σ_(r=1) ^∞ (1/r^2 ) = (π^2 /6)

provethatr=11r2=π26

Question Number 76229    Answers: 1   Comments: 0

Let P(x) be polynomial in x with integral coefficients. If n is a solution of P(x)≡0(mod n) , and a≡b(mod n), prove that b is also a solution.

LetP(x)bepolynomialinxwithintegralcoefficients.IfnisasolutionofP(x)0(modn),andab(modn),provethatbisalsoasolution.

Question Number 76232    Answers: 2   Comments: 2

how do we find ∫_0 ^(π/2) sinh^(−1) x dx and ∫_0 ^(π/2) cosh^(−1) xdx

howdowefindπ20sinh1xdxandπ20cosh1xdx

Question Number 76110    Answers: 1   Comments: 0

hello solve in R tanx>(√3) please explain me if possible.

hellosolveinRtanx>3pleaseexplainmeifpossible.

  Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com