Question and Answers Forum |
OthersQuestion and Answers: Page 81 |
sinh[ln (x + (√(1 + x^2 ))) ] ≡ A. 2x B. (1/x) C. x^2 D. x |
1+(z+2i)+(z+2i)^2 +(z+2i)^3 +(z+2i)^4 =0 find z , z∈C |
![]() |
please help me find the term independent of x in the expansion of (x + (3/x))^(−12 ) |
Σ_(n=1) ^(3050) i^n |
Π_(n=1) ^5 (((12n−2)^4 +18^2 )/((12n−8)^4 +18^2 )) =(((10^4 +324)(22^4 +324)(34^4 +324)(46^4 +324)(58^4 +324))/((4^4 +324)(16^4 +324)(28^4 +324)(40^4 +324)(52^4 +324))) |
![]() |
Find the convergence of Σ_(n=1) ^∞ (((1/n) + 1)/(−n^2 )) |
((a+b)/c)=((cos(((a−b)/2)))/(cos(c/2))) |
Find all pairs of (p, q) integer(s) such that p^3 − q^5 = (p + q)^2 |
Solution- log_8 x+log_4 x+log_2 x=11 ⇒(1/(log_x 8))+(1/(log_x 4))+(1/(log_x 2))=11 ⇒(1/(log_x 2^3 ))+(1/(log_x 2^2 ))+(1/(log_x 2))=11 ⇒(1/(3log_x 2))+(1/(2log_x 2))+(1/(log_x 2))=11 ⇒((1/3)+(1/2)+1)(1/(log_x 2))=11 ⇒((11)/6)×(1/(log_x 2))=11 ⇒(1/(log_x 2))=11×(6/(11)) ⇒log_2 x=6 ⇒x=2^6 ∴x=64 is this rule correct???? |
∫ ((2x^5 −x)/(x^3 −2))dx |
![]() |
prove that the equation (b^2 −4ac)x^2 + 4(a + c)x −4 = 0 is always real. |
find (dy/dx) at the point (0,3) when 2x^2 y + y + 4xy^2 = 2x + 3 |
Given that y = (√(5x^2 + 3)) , show that when x^2 = (6/5) , (d^2 y/dx^(2 ) ) = ((125)/8) |
find (dy/dx) if x = sin^2 t and y= tan t at t = (π/4) |
find (dy/dx) if y = 3^x e^(2x + 1) , at x =1 |
prove by mathematical induction, that for all positive integers n, Σ_(r=1) ^n r(r + 1) = (n/3)(n + 1)( n + 2) |
∫((x^2 +1)/((x+1)^2 ))e^x dx |
∫_(−2) ^( 2) (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx |
![]() |
if 5 x y 40 are in GP .find x and y |
show that c∣a ⇔ −c∣a. |
Use Residus theorem to prove that ∀ a>0 Σ_(n=0) ^∞ (1/( n^2 +a^2 )) = (1/2)((π/(ash(πa))) −(1/a^2 )) and Σ_(n=0) ^∞ (((−1)^n )/(n^2 +a^2 )) = (1/2)((( π)/(a.th(πa))) −(1/a^2 )) Assume that we can developp in integer serie the functions f(x)=(x/(shx)) and g(x)=(x/(thx)) Give the DL_2 of f and g around zero Why can′t we use that theorem to explicit f(a)=Σ_(n=0) ^∞ (((−1)^n )/( (2n+1)^2 +a^2 )) ??? |
help please. A river is 5m wide and flows at 3.0ms^(−1) . A man can swim at 2.0ms^(−1) in still water. if he sets off at an angle of 90° to the bank calculate a) the mans time and velocity b) his distance downstream from the starting point till when he reaches the other side of the river bank c) the actual distance he swims through the water. |