All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 161528 by Rasheed.Sindhi last updated on 19/Dec/21
PROVEthatthenumbersoftypes4k+2&4k+3areNOTperfect◻s.
Answered by mr W last updated on 19/Dec/21
(1)type4k+3assumeitcanbeaperfectsquare.thatmeansthereexistssuchanoddnumber2n+1,suchthat4k+3=(2n+1)2⇒4k+3=4n2+4n+1⇒12=n2+n−k=integerthisisacontradiction,therefore4k+3cannotbeaperfectsquare.(2)type4k+2similarly
Commented by Rasheed.Sindhi last updated on 19/Dec/21
Nicesir!ThanX!
Fortype4k+24k+2=2(2k+1)∵2occursonceonlyButinperfectsquareanyprimefactoroccursinevennumbertimes∴4k+2isnotaperfectsquare.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com