Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218662 by Nicholas666 last updated on 14/Apr/25

       Prove:    ∫^∞ _0  ((sin(x))/x) dx = (π/2)

Prove:0sin(x)xdx=π2

Answered by SdC355 last updated on 14/Apr/25

LT{sin(t)}=(1/(s^2 +1))  ∫_0 ^( ∞)  e^(−st) sin(t)dt=(1/(s^2 +1))  ∫_0 ^( ∞)    ((sin(t))/t)e^(−st) dt=∫_( s) ^( ∞)   (1/(u^2 +1)) dt=(π/2)−tan^(−1) (s)  ∫_0 ^( ∞)  ((sin(t))/t) dt=lim_(s→0) ∫_0 ^( ∞)  ((sin(t))/t)e^(−st) dt=lim_(s→0)  ∫_s ^∞   (1/(u^2 +1)) du  =lim_(s→0)  ((π/2)−tan^(−1) (s))=(π/2)  or ∫_0 ^∞   ((sin(t))/t) dt=Si(t)+C  ∴lim_(t→∞)  Si(t)=(π/2)  Q.E.D

LT{sin(t)}=1s2+10estsin(t)dt=1s2+10sin(t)testdt=s1u2+1dt=π2tan1(s)0sin(t)tdt=lims00sin(t)testdt=lims0s1u2+1du=lims0(π2tan1(s))=π2or0sin(t)tdt=Si(t)+ClimtSi(t)=π2Q.E.D

Commented by Nicholas666 last updated on 14/Apr/25

thank you sir

thankyousir

Answered by Nicholas666 last updated on 14/Apr/25

        ∫_0 ^∞ ((sin(x))/x)dx=(π/2)   ⇒f(t){_(0,∣t∣>a  ) ^(1,∣t∣<a)  ,  a>0  ⇒f^∧ (ω)=(1/( (√(2π))))∫_0 ^∞ f(t)e^(−iωt) dt     f^∧ (ω)(1/( (√(2π))))∫_(−a  ) ^a 1e^(−iωt) dt=(1/( (√(2π))))[(e^(−iωt) /(−iω))]_(−a) ^a       f^∧ (ω)=(1/( (√(2π)))) ((e^(−ωa) −e^(iωa) )/(−iω))=(1/( (√(2π)))) ((−2isin(ωa))/(−iω))=(√(2/π)) ((sin(ωa))/ω)  ⇒f(t)=(1/( (√(2π))))∫_(−∞) ^∞ f^∧ (ω)e^(iωt) dω        f(t)=(1/(2π))∫_(−∞) ^∞ (√(2/π)) ((sin(ωa))/ω) e^(iωt) dω                  =(1/π)∫_(−∞) ^∞ ((sin(ωa))/ω)(cos(ωt)+i sin(ωt)dω  ⇒I=(1/π)∫_(−∞) ^∞ ((sin(ωa))/ω)(cos(0)+i sin(0))dω       I=(1/π)∫_(−∞) ^∞ ((sin(ωa))/ω)(1+0)dω=(1/π)∫_(−∞) ^∞ ((sin(ωa))/ω)dω  ⇒I=(1/π).2∫_0 ^∞ ((sin(ωa))/ω)dω=(2/π)∫_0 ^∞ ((sin(ωa))/ω)dω  ⇒I=(2/π)∫_0 ^∞ ((sin(x))/(x/a)) (dx/a)=(2/π)∫_0 ^∞ ((sin(x))/x)dx  ⇒∫_0 ^∞ ((sin(x))/x)dx=(π/2) ✓

0sin(x)xdx=π2f(t){0,t∣>a1,t∣<a,a>0f(ω)=12π0f(t)eiωtdtf(ω)12πaa1eiωtdt=12π[eiωtiω]aaf(ω)=12πeωaeiωaiω=12π2isin(ωa)iω=2πsin(ωa)ωf(t)=12πf(ω)eiωtdωf(t)=12π2πsin(ωa)ωeiωtdω=1πsin(ωa)ω(cos(ωt)+isin(ωt)dωI=1πsin(ωa)ω(cos(0)+isin(0))dωI=1πsin(ωa)ω(1+0)dω=1πsin(ωa)ωdωI=1π.20sin(ωa)ωdω=2π0sin(ωa)ωdωI=2π0sin(x)x/adxa=2π0sin(x)xdx0sin(x)xdx=π2

Answered by MrGaster last updated on 14/Apr/25

Commented by Nicholas666 last updated on 14/Apr/25

thank you sir...

thankyousir...

Answered by vnm last updated on 14/Apr/25

  x>0, ∫_0 ^∞ e^(−tx) dt=−(1/x)e^(−tx) ∣_0 ^∞ =−(1/x)(0−1)=(1/x)  ∫_0 ^∞ ((sin x)/x)dx=∫_0 ^∞ (∫_0 ^∞ e^(−tx) dt)_(1/x) sin x∙dx=  ∫_0 ^∞ ∫_0 ^∞ e^(−tx) sin x∙dtdx=  ∫_0 ^∞ (∫_0 ^∞ e^(−tx) sin x∙dx)dt=  ∫_0 ^∞ (∫_0 ^∞ e^(−tx) ((e^(ix) −e^(−ix) )/(2i))dx)dt=  (1/(2i))∫_0 ^∞ (∫_0 ^∞ e^((−t+i)x) dx−∫_0 ^∞ e^((−t−i)x) dx)dt=  (1/(2i))∫_0 ^∞ ((1/(−t+i))e^((−t+i)x) ∣_0 ^∞ −(1/(−t−i))e^((−t−i)x) ∣_0 ^∞ )dt=  (1/(2i))∫_0 ^∞ ((1/(−t+i))(0−1)+(1/(t+i))(0−1))dt=  (1/(2i))∫_0 ^∞ ((1/(t−i))−(1/(t+i)))dt=(1/(2i))∫_0 ^∞ ((2i)/(t^2 +1))dt=∫_0 ^∞ (dt/(t^2 +1))=  tan^(−1) t∣_0 ^∞ =(π/2)

x>0,0etxdt=1xetx0=1x(01)=1x0sinxxdx=0(0etxdt)1/xsinxdx=00etxsinxdtdx=0(0etxsinxdx)dt=0(0etxeixeix2idx)dt=12i0(0e(t+i)xdx0e(ti)xdx)dt=12i0(1t+ie(t+i)x01tie(ti)x0)dt=12i0(1t+i(01)+1t+i(01))dt=12i0(1ti1t+i)dt=12i02it2+1dt=0dtt2+1=tan1t0=π2

Commented by Nicholas666 last updated on 14/Apr/25

thank you Sir, great solution

thankyouSir,greatsolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com