Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218624 by Nicholas666 last updated on 13/Apr/25

      Prove; ∫^e _(1/e)  (t^2 /e^t^(2 )  ) dt ≤ 1− (1/e^(2  ) )     e−the base of natural logarithm

Prove;1eet2et2dt11e2ethebaseofnaturallogarithm

Answered by Nicholas666 last updated on 13/Apr/25

∫_(1/e) ^e  (t^2 /e^t^2  ) dt ≤1−(1/e^2 )  ⇒f′t=(d/dt)(t^2 e^(−t^2 ) )=2te^(−t^2 ) +t^2 (−2te^(−t^2 ) )=  2te^(−t^2 ) (1−t^2 )  ⇒f′(0.5)=2(0.5)e^(−(0.5)^2 ) =  e^(−0.25) (1−0.25)=0.75e^(−25) >0  ⇒f′(2)=2(2)e^(−2^2 ) (1−2^2 )=  4e^(−4) (1−4)=−12e^(−4) <0  ⇒f(1)=(1^2 /e^(12) )=(1/e)  ⇒∫_(1/e) ^e (t^2 /e^t^(2 )  )dt≤∫_(1/e) ^e (1/e)dt  ⇒∫_(1/e) ^e (1/e)dt=(1/e)∫_(1/e) ^e 1 dt=(1/e)[t]_(1/e) ^e  =  (1/e)(e−(1/e))=(e^(2−1) /e^2 )=1−(1/e^2 )  ⇒∫_(1/e) ^e (t^2 /e^t^2  )dt ≤1−(1/e^2 )     Q.E.D

1/eet2et2dt11e2ft=ddt(t2et2)=2tet2+t2(2tet2)=2tet2(1t2)f(0.5)=2(0.5)e(0.5)2=e0.25(10.25)=0.75e25>0f(2)=2(2)e22(122)=4e4(14)=12e4<0f(1)=12e12=1e1/eet2et2dt1/ee1edt1/ee1edt=1e1/ee1dt=1e[t]1/ee=1e(e1e)=e21e2=11e21/eet2et2dt11e2Q.E.D

Terms of Service

Privacy Policy

Contact: info@tinkutara.com