Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88170 by Ar Brandon last updated on 08/Apr/20

Prove that   ∫_0 ^1 tcos nπtdt=(((−1)^n −1)/(n^2 π^2 ))

Provethat01tcosnπtdt=(1)n1n2π2

Commented by jagoll last updated on 08/Apr/20

= ((t.sin nπt)/(nπ)) + ((cos nπt)/(n^2 π^2 )) ] _0^1   = ((sin nπ)/(nπ)) + ((cos nπ)/(n^2 π^2 )) − (1/(n^2 π^2 ))   =  (((−1)^n −1)/(n^2 π^2 ))

=t.sinnπtnπ+cosnπtn2π2]01=sinnπnπ+cosnπn2π21n2π2=(1)n1n2π2

Commented by Joel578 last updated on 08/Apr/20

for n ∈ N

fornN

Terms of Service

Privacy Policy

Contact: info@tinkutara.com