Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 2795 by Rasheed Soomro last updated on 27/Nov/15

Prove that  (1+x+x^2 +...)(1+2x+3x^2 +...)                  =(1/2)(1.2+2.3x+3.4x^2 +...)

Provethat(1+x+x2+...)(1+2x+3x2+...)=12(1.2+2.3x+3.4x2+...)

Answered by prakash jain last updated on 27/Nov/15

A=(1+x+x^2 +...)  B=(1+2x+3x^2 +4x^3 )  Let us call coefficient of x^n  in A=a_n =1  Let us call coefficient of x^n  in B=b_n =(n+1)  coefficient of x_n  in product=      a_0 b_n +a_1 b_(n−1) +a_2 b_(n−2) +...+a_n b_0      =(n+1)+(n)+(n−1)+...+1     =(((n+1)(n+2))/2)  A∙B=Σ_(i=1) ^∞ (((i+1)(i+2))/2)x^i =(1/2)Σ_(i=1) ^∞ (i+1)(i+2)x^i            =(1/2)(1∙2+2∙3x+3∙4x^2 +4∙5x^3 +...)

A=(1+x+x2+...)B=(1+2x+3x2+4x3)LetuscallcoefficientofxninA=an=1LetuscallcoefficientofxninB=bn=(n+1)coefficientofxninproduct=a0bn+a1bn1+a2bn2+...+anb0=(n+1)+(n)+(n1)+...+1=(n+1)(n+2)2AB=i=1(i+1)(i+2)2xi=12i=1(i+1)(i+2)xi=12(12+23x+34x2+45x3+...)

Answered by Yozzi last updated on 27/Nov/15

The Maclaurin series of (1/(1−x)) gives  (1/(1−x))=1+x+x^2 +x^3 +...=Σ_(r=0) ^∞ x^r     PROOF:   Let f(x)=(1/(1−x)) ,x∈R−{1}.  Differentiating we get  f^((0)) (x)=(1−x)^(−1)   f^((1)) (x)=(1−x)^(−2)   f^((2)) (x)=2(1−x)^(−3)   f^((3)) (x)=6(1−x)^(−4) .  I conject that f^((n)) (x)=n!(1−x)^(−n−1)   where f^((n)) (x) denotes the nth derivative  of f(x)=(1−x)^(−1)  (x≠1) and n∈N∪{0}.    Let P(n) be the proposition that             f^((n)) (x)=n!(1−x)^(−n−1)   as conjectured.  For n=0, P(0) gives f^((0)) =0!(1−x)^(−0−1)   f^((0)) (x)=1×(1−x)^(−1) =(1−x)^(−1)   which is f(x) differentiated zero times.  Therefore, P(n) is true when n=0.  Assume now that P(n) is true when  n=k:  f^((k)) (x)=k!(1−x)^(−k−1) .  Fot n=k+1,  f^((k+1)) (x)=(d/dx)(f^((k)) (x))                    =(d/dx)(k!(1−x)^(−k−1) )                    =(−k−1)(−1)k!(1−x)^(−k−2)                     =(k+1)k!(1−x)^(−k−2)   f^((k+1)) (x)=(k+1)!(1−x)^(−(k+1)−1)   So, P(k+1) is true, assuming P(k) is  true. Since P(0) is true then,by the  principle of mathematical induction,  P(n) is true for all non−negative   integers.     Hence, f(x) is infinitely differentiable  for x≠1 and f(x) with all its derivatives are  defined at x=0. We can then obtain   the Maclaurin series expansion of  f(x)=(1/(1−x)). This is given by  f(x)=Σ_(r=0) ^∞ ((x^r f^((r)) (0))/(r!))  Since f^((r)) (x)=r!(1−x)^(−r−1)   f(x)=Σ_(r=0) ^∞ (x^r /(r!))×r!(1−0)^(−r−1)   f(x)=Σ_(r=0) ^∞ x^r   Therefore, (1/(1−x))=Σ_(r=0) ^∞ x^r .                           □    Observe that   1+2x+3x^2 +4x^3 +...=Σ_(r=1) ^∞ rx^(r−1)   R.H.S=Σ_(r=1) ^∞ (d/dx)(x^r ).  The series is term by term differentiable.  ∴ Σ_(r=1) ^∞ (d/dx)(x^r )=(d/dx)(Σ_(r=1) ^∞ x^r )=(d/dx)(xΣ_(r=1) ^∞ x^(r−1) ).  Now,Σ_(r=1) ^∞ x^(r−1) =Σ_(r=0) ^∞ x^r =(1/(1−x)).  ∴R.H.S=(d/dx)((x/(1−x)))                  =(((1−x)×1−(−1)(x))/((1−x)^2 ))  (Quotient rule)                  =((1−x+x)/((1−x)^2 ))  R.H.S=(1/((1−x)^2 )). ∴ Σ_(r=1) ^∞ rx^(r−1) =(1/((1−x)^2 )).  The L.H.S product of the equation  in question becomes  (Σ_(r=0) ^∞ x^r )(Σ_(r=1) ^∞ rx^(r−1) )=(1/(1−x))×(1/((1−x)^2 ))  L.H.S=(1/((1−x)^3 )).  Let g(x)=(1−x)^(−3) .  g^((1)) (x)=3(1−x)^(−4) =((3!)/(2!))(1−x)^(−4)   g^((2)) (x)=3×4(1−x)^(−5) =((4!)/(2!))(1−x)^(−5)   g^((3)) (x)=3×4×5(1−x)^(−6) =((5!)/(2!))(1−x)^(−6)   I thus state without proof  that the nth derivative

TheMaclaurinseriesof11xgives11x=1+x+x2+x3+...=r=0xrPROOF:Letf(x)=11x,xR{1}.Differentiatingwegetf(0)(x)=(1x)1f(1)(x)=(1x)2f(2)(x)=2(1x)3f(3)(x)=6(1x)4.Iconjectthatf(n)(x)=n!(1x)n1wheref(n)(x)denotesthenthderivativeoff(x)=(1x)1(x1)andnN{0}.LetP(n)bethepropositionthatf(n)(x)=n!(1x)n1asconjectured.Forn=0,P(0)givesf(0)=0!(1x)01f(0)(x)=1×(1x)1=(1x)1whichisf(x)differentiatedzerotimes.Therefore,P(n)istruewhenn=0.AssumenowthatP(n)istruewhenn=k:f(k)(x)=k!(1x)k1.Fotn=k+1,f(k+1)(x)=ddx(f(k)(x))=ddx(k!(1x)k1)=(k1)(1)k!(1x)k2=(k+1)k!(1x)k2f(k+1)(x)=(k+1)!(1x)(k+1)1So,P(k+1)istrue,assumingP(k)istrue.SinceP(0)istruethen,bytheprincipleofmathematicalinduction,P(n)istrueforallnonnegativeintegers.Hence,f(x)isinfinitelydifferentiableforx1andf(x)withallitsderivativesaredefinedatx=0.WecanthenobtaintheMaclaurinseriesexpansionoff(x)=11x.Thisisgivenbyf(x)=r=0xrf(r)(0)r!Sincef(r)(x)=r!(1x)r1f(x)=r=0xrr!×r!(10)r1f(x)=r=0xrTherefore,11x=r=0xr.Observethat1+2x+3x2+4x3+...=r=1rxr1R.H.S=r=1ddx(xr).Theseriesistermbytermdifferentiable.r=1ddx(xr)=ddx(r=1xr)=ddx(xr=1xr1).Now,r=1xr1=r=0xr=11x.R.H.S=ddx(x1x)=(1x)×1(1)(x)(1x)2(Quotientrule)=1x+x(1x)2R.H.S=1(1x)2.r=1rxr1=1(1x)2.TheL.H.Sproductoftheequationinquestionbecomes(r=0xr)(r=1rxr1)=11x×1(1x)2L.H.S=1(1x)3.Letg(x)=(1x)3.g(1)(x)=3(1x)4=3!2!(1x)4g(2)(x)=3×4(1x)5=4!2!(1x)5g(3)(x)=3×4×5(1x)6=5!2!(1x)6Ithusstatewithoutproofthatthenthderivative

Commented by Yozzi last updated on 27/Nov/15

I ran out of space...

Iranoutofspace...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com