Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216739 by ArshadS last updated on 17/Feb/25

Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1  Question#216694 reposted for new answers

Provethat35+2352=1You can't use 'macro parameter character #' in math mode

Answered by Rasheed.Sindhi last updated on 17/Feb/25

(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =x  And   a=(√5) +2 , b=(√5) −2  ⇒a−b=4 , ab=1  a−b=((a)^(1/3)  )^3 −(((b ))^(1/3)  )^3             =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  )^2 +((b)^(1/3)  )^2 +((a)^(1/3)  )((b)^(1/3) ))            =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  −(b)^(1/3)  )^2 +3((a)^(1/3)  )((b)^(1/3) ))           4=(x)( (x)^2 +3(1) )  x^3 +3x−4=0  (x−1)(x^2 +x+4)=0  x=1 or x^2 +x+4=0⇒x∉R   proved

5+23523=1let5+23523=xAnda=5+2,b=52ab=4,ab=1ab=(a3)3(b3)3=(a3b3)((a3)2+(b3)2+(a3)(b3))=(a3b3)((a3b3)2+3(a3)(b3))4=(x)((x)2+3(1))x3+3x4=0(x1)(x2+x+4)=0x=1orx2+x+4=0xRproved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com