All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 158240 by HongKing last updated on 01/Nov/21
Provethat5dividen(4n2+1)(6n2+1)foranynaturalnumbern
Answered by Rasheed.Sindhi last updated on 01/Nov/21
A(n)=n(4n2+1)(6n2+1)nispossiblyequaltooneofthefollowing:5m,5m+1,5m+2,5m+3,5m+4n=5m:A(5m)=5m(4(5m)2+1)(6(5m)2+1)Obviously5∣A(5m)n=5m+1:Forn=5m+1Thefactor4n2+1ofA(n)=4(5m+1)2+1=100m2+40m+5=5(20m2+8m+1)∴5∣A(5m+1)n=5m+2:Forn=5m+2thefactor6n2+1=6(5m+2)2+1=150m2+120m+25=5(30m2+24m+5)∴5∣A(5m+2)n=5m+3:Thefactor6n2+1ofA(n)=6(5m+3)2+1=150m2+180m+55=5(30m2+36m+11)∴5∣A(5m+3)n=5m+4:Thefactor4n2+1ofA(n)=4(5m+4)2+1=100m2+160+65=5(20m2+32m+13)∴5∣A(5m+4)HENCE5∣A(n)inallpossiblecases
Commented by HongKing last updated on 01/Nov/21
thankyousomuchdearSercool
Terms of Service
Privacy Policy
Contact: info@tinkutara.com