Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69233 by ~ À ® @ 237 ~ last updated on 21/Sep/19

Prove that  B=∫_0 ^1    [ln(−lnu)]^2  du = γ^2 + ζ(2)

ProvethatB=01[ln(lnu)]2du=γ2+ζ(2)

Commented by mathmax by abdo last updated on 22/Sep/19

B=∫_0 ^1 {ln(−lnx)}^2 dx   changement −lnx =t give x =e^(−t)   B =−∫_0 ^∞ (ln(t)^2   (−e^(−t) )dt =∫_0 ^∞   (ln(t))^2 e^(−t) dt  we have Γ(x)=∫_0 ^∞   t^(x−1) e^(−t)  dt  with x>0 ⇒Γ(x)=∫_0 ^∞ e^((x−1)lnt) e^(−t) dt  ⇒Γ^′ (x) =∫_0 ^∞ ln(t) t^(x−1)  e^(−t)  dt ⇒Γ^((2)) (x)=∫_0 ^∞ (ln(t))^2 t^(x−1)  e^(−t)  dt ⇒  Γ^((2)) (1) =∫_0 ^∞   (ln(t))^(2 ) e^(−t)  dt  but we have the formula  ((Γ^′ (x))/(Γ(x))) =−γ−(1/x) +Σ_(n=1) ^∞ ((1/n)−(1/(n+x)))  by derivation  we get  ((Γ^((2)) (x)Γ(x)−(Γ^′ (x))^2 )/((Γ(x))^2 )) =(1/x^2 ) +Σ_(n=1) ^∞ (1/((n+x)^2 )) ⇒  ((Γ^((2)) (1)Γ(1)−(Γ^′ (1))^2 )/((Γ(1))^2 )) =1+Σ_(n=1) ^∞  (1/((n+1)^2 )) =Σ_(n=0) ^∞  (1/((n+1)^2 )) =(π^2 /6)  Γ(1)=1   and Γ^′ (1) =∫_0 ^∞  e^(−t) ln(t)dt =−γ (this result is proved) ⇒  Γ^((2)) (1) −γ^2  =(π^2 /6) ⇒Γ^((2)) (1) =γ^2  +(π^2 /6) =B

B=01{ln(lnx)}2dxchangementlnx=tgivex=etB=0(ln(t)2(et)dt=0(ln(t))2etdtwehaveΓ(x)=0tx1etdtwithx>0Γ(x)=0e(x1)lntetdtΓ(x)=0ln(t)tx1etdtΓ(2)(x)=0(ln(t))2tx1etdtΓ(2)(1)=0(ln(t))2etdtbutwehavetheformulaΓ(x)Γ(x)=γ1x+n=1(1n1n+x)byderivationwegetΓ(2)(x)Γ(x)(Γ(x))2(Γ(x))2=1x2+n=11(n+x)2Γ(2)(1)Γ(1)(Γ(1))2(Γ(1))2=1+n=11(n+1)2=n=01(n+1)2=π26Γ(1)=1andΓ(1)=0etln(t)dt=γ(thisresultisproved)Γ(2)(1)γ2=π26Γ(2)(1)=γ2+π26=B

Answered by mind is power last updated on 21/Sep/19

−ln(u)=t  ⇒∫_0 ^(+∞) [ln(t)]^2 e^(−t) dt  Γ(z)=∫_0 ^(+∞) t^(z−1) e^(−t) dt  ⇒Γ′(z)=∫_0 ^(+∞) (d/dz)e^((z−1)ln(t)) e^(−t) dt  ⇒Γ′(z)=∫_0 ^(+∞) ln(t)t^(z−1) e^(−t) dt  ⇒Γ′′(z)=∫_0 ^(+∞) (ln(t))^2 t^(z−1) e^(−t) dt  ⇒Γ′′(1)=∫_0 ^(+∞) (ln(t))^2 e^(−t) dt  we have  ψ(z)=((Γ′(z))/(Γ(z)))=−γ−(1/z)+Σ_(n≥1) (1/n)−(1/(n+z))...psi function to prove it tack ln(Γ)  Γ′(1)=−γ  (((Γ′(z))/(Γ(z))))^′ =((Γ′′(z)Γ(z)−(Γ′(z))^2 )/(Γ(z)^2 ))=(1/z^2 )+Σ_(n≥1) (1/((n+z)^2 ))  ⇒((Γ′′(1)Γ(1)−(Γ′(1))^2 )/(Γ(1)^2 ))=1+Σ_(n≥1) (1/((1+n)^2 ))=Σ_(n≥1) (1/n^2 )=ζ(2)  Γ(1)=1    .Γ′(1)=−γ  ⇒Γ′′(1)−γ^2 =ζ(2)⇒Γ′′(1)=γ^2 +ζ(2)

ln(u)=t0+[ln(t)]2etdtΓ(z)=0+tz1etdtΓ(z)=0+ddze(z1)ln(t)etdtΓ(z)=0+ln(t)tz1etdtΓ(z)=0+(ln(t))2tz1etdtΓ(1)=0+(ln(t))2etdtwehaveψ(z)=Γ(z)Γ(z)=γ1z+n11n1n+z...psifunctiontoproveittackln(Γ)Γ(1)=γMissing \left or extra \rightΓ(1)Γ(1)(Γ(1))2Γ(1)2=1+n11(1+n)2=n11n2=ζ(2)Γ(1)=1.Γ(1)=γΓ(1)γ2=ζ(2)Γ(1)=γ2+ζ(2)

Commented by ~ À ® @ 237 ~ last updated on 21/Sep/19

Thanks you sir  !  have you prove that Γ′(1)=−γ ?

Thanksyousir!haveyouprovethatΓ(1)=γ?

Commented by mind is power last updated on 21/Sep/19

ψ(1)=((Γ′(1))/(Γ(1)))=−γ−(1/1)+Σ_(n≥1) (1/n)−(1/(n+1))=−γ  ⇒Γ′(1)=−γ

ψ(1)=Γ(1)Γ(1)=γ11+n11n1n+1=γΓ(1)=γ

Commented by ~ À ® @ 237 ~ last updated on 21/Sep/19

you′re solving a question by another : else thanks!

youresolvingaquestionbyanother:elsethanks!

Commented by mind is power last updated on 21/Sep/19

Γ(z)=(e^(−γz) /z).∐_(k≥1) (e^(z/k) /(1+(z/k)))  ⇒ln(Γ(z))=−γz−ln(z)+Σ_(k≥1) (z/k)−ln(1+(z/k))  ⇒((Γ′(z))/(Γ(z)))=−γ−(1/z)+Σ_(k≥1) (1/k)−(1/k).(k/(k+z))  ⇒((Γ′(z))/(Γ(z)))=−γ−(1/z)+Σ_(k≥1) (1/k)−(1/(k+z))

Γ(z)=eγzz.k1ezk1+zkln(Γ(z))=γzln(z)+k1zkln(1+zk)Γ(z)Γ(z)=γ1z+k11k1k.kk+zΓ(z)Γ(z)=γ1z+k11k1k+z

Terms of Service

Privacy Policy

Contact: info@tinkutara.com