Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 51167 by Tawa1 last updated on 24/Dec/18

Prove that:  (a)  If  ∣z_1  + z_2 ∣ = ∣z_1  − z_2 ∣,  the difference of the arguements of z_1   and z_2  is  (π/2)  (b)  If  arg{((z_1  + z_2 )/(z_1  − z_2 ))} = (π/2) ,   then    ∣z_1 ∣ = ∣z_2 ∣

Provethat:(a)Ifz1+z2=z1z2,thedifferenceofthearguementsofz1andz2isπ2(b)Ifarg{z1+z2z1z2}=π2,thenz1=z2

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Dec/18

z_1 =a+ib   z_2 =c+id  a)∣(a+c)+i(b+d)∣=∣(a−c)+i(b−d)∣  (√((a+c)^2 +(b+d)^2 )) =(√((a−c)^2 +(b−d)^2 ))   2ac+2bd=−2ac−2bd  ac+bd=0  ac=−bd  (b/a)=−(c/d)  tanθ_1 =−cotθ_2   tanθ_1 =tan((π/2)+θ_2 )  θ_1 −θ_2 =(π/2)  b)((z_1 +z_2 )/(z_1 −z_2 ))  (((a+c)+i(b+d))/((a−c)+i(b−d)))  (((({(a+c)+i(b+d)}{(a−c)−i(b−d)})/((a−c)^2 +(b−d)^2 )) )/)  =(({(a^2 −c^2 +b^2 −d^2 )+i(−ab+ad−bc+cd+ab−bc+ad−cd})/((a−c)^2 +(b−d)^2 ))  tan(π/2)=((2ad−2bc)/((a−c)^2 +(b−d)^2 ))  (a−c)^2 +(b−d)^2 =0  so a=c  and b=d  ∣z_1 ∣=(√(a^2 +b^2 ))        =(√(c^2 +d^2 ))        =∣z_2 ∣

z1=a+ibz2=c+ida)(a+c)+i(b+d)∣=∣(ac)+i(bd)(a+c)2+(b+d)2=(ac)2+(bd)22ac+2bd=2ac2bdac+bd=0ac=bdba=cdtanθ1=cotθ2tanθ1=tan(π2+θ2)θ1θ2=π2b)z1+z2z1z2(a+c)+i(b+d)(ac)+i(bd){(a+c)+i(b+d)}{(ac)i(bd)}(ac)2+(bd)2={(a2c2+b2d2)+i(ab+adbc+cd+abbc+adcd}(ac)2+(bd)2tanπ2=2ad2bc(ac)2+(bd)2(ac)2+(bd)2=0soa=candb=dz1∣=a2+b2=c2+d2=∣z2

Commented by Tawa1 last updated on 24/Dec/18

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 24/Dec/18

Sir,  how is     − cotθ_2   =  tan((π/2) + θ_2 )  ??

Sir,howiscotθ2=tan(π2+θ2)??

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Dec/18

tan((π/2)−θ)=cotθ  because (π/2)−θ=1st quadrant  but tan((π/2)+θ)=−cotθ  because ((π/2)+θ)  2nd quadrant

tan(π2θ)=cotθbecauseπ2θ=1stquadrantbuttan(π2+θ)=cotθbecause(π2+θ)2ndquadrant

Commented by Tawa1 last updated on 24/Dec/18

God bless you sir

Godblessyousir

Answered by peter frank last updated on 24/Dec/18

z_1 =x_1 +iy_1   z_2 =x_2 +iy_2   z_(1  ) +z_2 =(x_1 +x_(2 ) )+i(y_(1 ) +y_2 )  ∣z_(1  ) +z_(2 ) ∣=∣(x_1 +x_(2 ) )+i(y_(1 ) +y_2 )∣  (√((x_1 +x_2 )^2 +(y_1 +y_(2 ) )^2  )) ....(i)  ∣z_(1 ) −z_(2  ) ∣=(√((x_(1 ) −x_(2 ) )^2 +(y_1 −y_2 )^2 )) .....(ii)  ∣z_(1 ) −z_2 ∣=∣z_1 +z_2 ∣  ∣(√((x_(1 ) −x_(2 ) )^2 +(y_1 −y_2 )^2 )) =(√((x_(1 ) +x_2 )^2 +(y_1 +y_2 )^2 ))  2x_(1 ) x_2 −2y_1 y_2 =−2x_1 x_2 −2y_1 y_2   x_(1 ) x_(2  ) =−y_(1 ) y_2   1=−((y_1 /x_1 ) ).((y_2 /x_2 ))  1=−tan θ_(1  ) .tan θ_2   −tan^(−1) (π/4)=tan θ_1   tan^(−1) (π/4)=tan θ_(2  )   −2tan^(−1) (π/4)=tan (θ_1 −θ_(2 ) )  2.(π/4)=θ_1 −θ_2   (π/2)=θ_1 −θ_2   right or wrong?

z1=x1+iy1z2=x2+iy2z1+z2=(x1+x2)+i(y1+y2)z1+z2∣=∣(x1+x2)+i(y1+y2)(x1+x2)2+(y1+y2)2....(i)z1z2∣=(x1x2)2+(y1y2)2.....(ii)z1z2∣=∣z1+z2(x1x2)2+(y1y2)2=(x1+x2)2+(y1+y2)22x1x22y1y2=2x1x22y1y2x1x2=y1y21=(y1x1).(y2x2)1=tanθ1.tanθ2tan1π4=tanθ1tan1π4=tanθ22tan1π4=tan(θ1θ2)2.π4=θ1θ2π2=θ1θ2rightorwrong?

Commented by Tawa1 last updated on 24/Dec/18

God bless you sir

Godblessyousir

Answered by peter frank last updated on 24/Dec/18

[arg(z_1 +z_(2 ) )−arg(z_1 −z_2 )=(π/2)  arg[(x_(1 ) +x_2 )+i(y_1 +y_2 )]−[arg(x_1 −x_2 +i(y_1 −y_2 )]  tan^(−1) (((y_(1 ) +y_2 )/(x_1 +x_2 )))−tan^(−1) (((y_1 −y_2 )/(x_1 −x_2 )))=(π/2)  (((y_(1 ) +y_2 )/(x_1 +x_2 )))+(((y_1 −y_2 )/(x_1 −x_2 )))÷[1−(((y_1 +y_2 )/(x_1 +x_2 ))).(((y_1 −y_2 )/(x_(1 ) −x_2 )))=(π/2)  (((y_(1 ) +y_2 )/(x_1 +x_2 )))+(((y_1 −y_2 )/(x_1 −x_2 )))÷[1−(((y_1 +y_2 )/(x_1 +x_2 ))).(((y_1 −y_2 )/(x_(1 ) −x_2 )))=(1/0)   x_1 ^2 −x_2 ^2 +y_2 ^2 −y_1 ^2 =0               x_1 ^2 +y_1 ^2 −x_2 ^2 −y_2 ^2 =0               x_1 ^2 +y_1 ^2 =x_2 ^2 +y_(2  ) ^2               ∣z_(1 ) ∣=∣z_2 ∣

[arg(z1+z2)arg(z1z2)=π2arg[(x1+x2)+i(y1+y2)][arg(x1x2+i(y1y2)]tan1(y1+y2x1+x2)tan1(y1y2x1x2)=π2(y1+y2x1+x2)+(y1y2x1x2)÷[1(y1+y2x1+x2).(y1y2x1x2)=π2(y1+y2x1+x2)+(y1y2x1x2)÷[1(y1+y2x1+x2).(y1y2x1x2)=10x12x22+y22y12=0x12+y12x22y22=0x12+y12=x22+y22z1∣=∣z2

Commented by Tawa1 last updated on 24/Dec/18

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com