Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 83036 by otchereabdullai@gmail.com last updated on 27/Feb/20

Prove that cos^4 θ−sin^4 θ=cos^2 θ−sin^2 θ

Provethatcos4θsin4θ=cos2θsin2θ

Commented by Tony Lin last updated on 27/Feb/20

cos^4 θ−sin^4 θ  =(cos^2 θ−sin^2 θ)^2 +2sin^2 θcos^2 θ  =((cos4θ+sin4θ+1)/2)≠cos2θ

cos4θsin4θ=(cos2θsin2θ)2+2sin2θcos2θ=cos4θ+sin4θ+12cos2θ

Commented by MJS last updated on 27/Feb/20

cos θ =c∧sin θ =s  c^4 −s^4 =c^2 −s^2   (c^2 −s^2 )(c^2 +s^2 )=c^2 −s^2   but c^2 +s^2 =1  ⇒ true

cosθ=csinθ=sc4s4=c2s2(c2s2)(c2+s2)=c2s2butc2+s2=1true

Commented by otchereabdullai@gmail.com last updated on 27/Feb/20

thanks prof mjs

thanksprofmjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com