Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 13888 by Tinkutara last updated on 24/May/17

Prove that if A′, B′ and C′ are the  midpoints of the sides BC, CA and AB,  respectively, then  AA′ + BB′ + CC′ < AB + BC + CA

ProvethatifA,BandCarethemidpointsofthesidesBC,CAandAB,respectively,thenAA+BB+CC<AB+BC+CA

Commented by Tinkutara last updated on 24/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

AG+BG>AB⇒(2/3)(AA^′ +BB^′ )>AB  BG+GC>BC⇒(2/3)(BB^′ +CC^′ )>BC  AG+GC>AC⇒(2/3)(AA^′ +CC^′ )>AC  ⇒1)AB+BC+CA<(4/3)(AA^′ +BB^′ +CC^′ )  2)((∣AB−AC∣)/2)<AA^′ <((AB+AC)/2)  3)a(m_a ^2 +(a/2).(a/2))=b^2 .(a/2)+c^2 .(a/2)(Estewart′s teorem)  ⇒m_a ^2 +(a^2 /4)=((b^2 +c^2 )/2)⇒m_a ^2 =((2(b^2 +c^2 )−a^2 )/4)  =((2(b^2 +c^2 )−(b^2 +c^2 −2bc.cosA))/4)=(1/4)(b^2 +c^2 +2bc.cosA)=  =(1/4)(b^2 +c^2 +2bc.cosA)<(1/4)(b^2 +c^2 +2bc)=  =(1/4)(b+c)^2 ⇒m_a <(1/2)(b+c)  similarly:⇒m_b <(1/2)(a+c),m_c <(1/2)(a+b)  ⇒m_a +m_b +m_c <(1/2)(2a+2b+2c)=a+b+c  ⇒m_a +m_b +m_c <a+b+c   .■  4)if: m_a =((b+c)/2)⇒((2(b^2 +c^2 )−a^2 )/4)=((b^2 +c^2 +2bc)/4)  ⇒b^2 +c^2 −2bc=a^2 ⇒(b−c)^2 =a^2 ⇒b−c=a(impossible)  or:b^2 +c^2 −2bc=b^2 +c^2 −2bc.cosA  ⇒cosA=1⇒∡A=0 (impossible )  so: m_a ≰(1/2)(b+c) and: m_a <(1/2)(b+c) .  5)A=90^° ⇒4m_a ^2 =b^2 +c^2 =a^2 ⇒m_a =(a/2).      A=120^° ⇒4m_a ^2 =b^2 +c^2 −bc      A=60⇒   4m_a ^2 =b^2 +c^2 +bc  6)A=90,B=60,C=30  ⇒4(m_a ^2 +m_b ^2 +m_c ^2 )=a^2 +a^2 +c^2 +ac+a^2 +b^2 +(√3)ab=  =4a^2 +(√3)a(b+c).  7)A=90,b=c⇒Σm_a ^2 =4a^2 +2(√2)ab .^   8)BC^2 =BG^2 +GC^2 −2BG.GC.cosBG^� C  ∡BGC=ϕ⇒a^2 =(4/9)m_b ^2 +(4/9)m_c ^2 −2(2/3)m_b .(2/3)m_c cosϕ  ⇒(9/4)a^2 =m_b ^2 +m_c ^2 −2m_b .m_c .cosϕ  ϕ=90⇒(9/4)a^2 =((2(a^2 +c^2 )−b^2 )/4)+((2(a^2 +b^2 )−c^2 )/4)⇒  ⇒(if:m_b ⊥m_c )⇒(5a^2 =b^2 +c^2 ),(m_a =(3/2)a)  9)AB⊥AC⇒m_b ^2 =((2(a^2 +c^2 )−b^2 )/4)=((b^2 +2c^2 )/4)                        m_c ^2 =((2(a^2 +b^2 )−c^2 )/4)=((2b^2 +c^2 )/4)  ⇒m_b ^2 +m_c ^2 =(3/4)(b^2 +c^2 )=(3/4)a^2 =3m_a ^2   ⇒ { ((b⊥c⇒      m_b ^2 +m_c ^2 =3m_a ^2 ,m_a =(1/2)a .)),((m_b ⊥m_c ⇒b^2 +c^2 =5a^2 ,m_a =(3/2)a .)) :}

AG+BG>AB23(AA+BB)>ABBG+GC>BC23(BB+CC)>BCAG+GC>AC23(AA+CC)>AC1)AB+BC+CA<43(AA+BB+CC)2)ABAC2<AA<AB+AC23)a(ma2+a2.a2)=b2.a2+c2.a2(Estewartsteorem)ma2+a24=b2+c22ma2=2(b2+c2)a24=2(b2+c2)(b2+c22bc.cosA)4=14(b2+c2+2bc.cosA)==14(b2+c2+2bc.cosA)<14(b2+c2+2bc)==14(b+c)2ma<12(b+c)similarly:⇒mb<12(a+c),mc<12(a+b)ma+mb+mc<12(2a+2b+2c)=a+b+cma+mb+mc<a+b+c.4)if:ma=b+c22(b2+c2)a24=b2+c2+2bc4b2+c22bc=a2(bc)2=a2bc=a(impossible)or:b2+c22bc=b2+c22bc.cosAcosA=1A=0(impossible)so:ma12(b+c)and:ma<12(b+c).5)A=90°4ma2=b2+c2=a2ma=a2.A=120°4ma2=b2+c2bcA=604ma2=b2+c2+bc6)A=90,B=60,C=304(ma2+mb2+mc2)=a2+a2+c2+ac+a2+b2+3ab==4a2+3a(b+c).7)A=90,b=cΣma2=4a2+22ab.8)BC2=BG2+GC22BG.GC.cosBGCBGC=φa2=49mb2+49mc2223mb.23mccosφ94a2=mb2+mc22mb.mc.cosφφ=9094a2=2(a2+c2)b24+2(a2+b2)c24(if:mbmc)(5a2=b2+c2),(ma=32a)9)ABACmb2=2(a2+c2)b24=b2+2c24mc2=2(a2+b2)c24=2b2+c24mb2+mc2=34(b2+c2)=34a2=3ma2{bcmb2+mc2=3ma2,ma=12a.mbmcb2+c2=5a2,ma=32a.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

in case of:∡AGB=∡BGC=∡AGC  show that:  1) S_(ABC) =((√3)/(12)).(a^2 +b^2 +c^2 )  2)(a/h_a )+(b/h_b )+(c/h_c )=2(√3)  .  (h_a =altitude from A^�  to BC)

incaseof:AGB=BGC=AGCshowthat:1)SABC=312.(a2+b2+c2)2)aha+bhb+chc=23.(ha=altitudefromAtoBC)

Answered by mrW1 last updated on 24/May/17

AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))  <(1/2)(√(AB^2 +AC^2 +2×AB×AC))   =(1/2)(√((AB+AC)^2 ))=(1/2)(AB+AC)    AA′<(1/2)(AB+AC)  BB′<(1/2)(BA+BC)  CC′<(1/2)(CB+CA)  ⇒AA′ + BB′ + CC′ < AB + BC + CA

AA=12AB2+AC2+2×AB×AC×cosA<12AB2+AC2+2×AB×AC=12(AB+AC)2=12(AB+AC)AA<12(AB+AC)BB<12(BA+BC)CC<12(CB+CA)AA+BB+CC<AB+BC+CA

Commented by mrW1 last updated on 24/May/17

You can also prove like this:  since BA′=A′C  ⇒A′A′′=A′A′′′  AA′′<AC  AA′′′<AB  AA′=(1/2)(AA′′+AA′′′)<(1/2)(AC+AB)

Youcanalsoprovelikethis:sinceBA=ACAA=AAAA<ACAA<ABAA=12(AA+AA)<12(AC+AB)

Commented by mrW1 last updated on 24/May/17

Using law of cosines we get:  AB^2 =BA′^2 +AA′^2 −2×BA′×AA′×cos ∠AA′B    ...(i)    AC^2 =CA′^2 +AA′^2 −2×CA′×AA′×cos ∠AA′C  AC^2 =CA′^2 +AA′^2 −2×CA′×AA′×cos (180°−∠AA′B)  AC^2 =CA′^2 +AA′^2 +2×CA′×AA′×cos ∠AA′B  AC^2 =CA′^2 +AA′^2 +2×BA′×AA′×cos ∠AA′B   ...(ii)    (i)+(ii):  AB^2 +AC^2 =BA′^2 +CA′^2 +2×AA′^2   AB^2 +AC^2 =(((BC)/2))^2 +(((BC)/2))^2 +2×AA′^2   AB^2 +AC^2 =((BC^2 )/2)+2×AA′^2   AA′^2 =(1/2)(AB^2 +AC^2 −((BC^2 )/2))   ...(iii)    BC^2 =AB^2 +AC^2 −2×AB×AC×cos ∠A  into (iii):  AA′^2 =(1/4)(AB^2 +AC^2 +2×AB×AC×cos ∠A)   ...(iii)  ⇒AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))

Usinglawofcosinesweget:AB2=BA2+AA22×BA×AA×cosAAB...(i)AC2=CA2+AA22×CA×AA×cosAACAC2=CA2+AA22×CA×AA×cos(180°AAB)AC2=CA2+AA2+2×CA×AA×cosAABAC2=CA2+AA2+2×BA×AA×cosAAB...(ii)(i)+(ii):AB2+AC2=BA2+CA2+2×AA2AB2+AC2=(BC2)2+(BC2)2+2×AA2AB2+AC2=BC22+2×AA2AA2=12(AB2+AC2BC22)...(iii)BC2=AB2+AC22×AB×AC×cosAinto(iii):AA2=14(AB2+AC2+2×AB×AC×cosA)...(iii)AA=12AB2+AC2+2×AB×AC×cosA

Commented by ajfour last updated on 24/May/17

how nice !

hownice!

Commented by mrW1 last updated on 24/May/17

Commented by ajfour last updated on 24/May/17

all tbe more better !

alltbemorebetter!

Commented by Rishabh#1 last updated on 24/May/17

How did u get  AA′=(1/2)(√(AB^2 +AC^2 +2×AB×AC×cos ∠A))

HowdidugetAA=12AB2+AC2+2×AB×AC×cosA

Commented by Tinkutara last updated on 25/May/17

Thanks.

Thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com