All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 75066 by ~blr237~ last updated on 06/Dec/19
ProvethatiffisafunctionR→Randthereexistx0>0,suchasL(f)(x0)existthenlimt→∞f(t)e−x0t=0and∀x>x0L(f)(x)exist.L(f)istheLaplacetransformedfunction
Answered by mind is power last updated on 07/Dec/19
L(f)(s)=∫0+∞e−stf(t)dtL(f)(x0)=∫0+∞∣e−x0tf(t)∣dt<∞⇒e−x0tf(t)isintegrablin+∞⇒e−x0tf(t)→0bycvforx>x0x=x0+n,n∈R+L(f)(x)=∫0+∞e−(x0+n)tf(t)dt=∫0+∞e−x0tf(t).e−ntdtsinceL(f)(x0)exist⇒limf(t)e−x0t=o⇒∃A∈R∀x>A∣f(t)e−x0t∣<1⇒∣f(t)e−x0t.e−nt∣<e−ntso∣f(t)e−(x0+n)t∣<e−ntt→e−ntisintegraln>0∀t>Aso∫0+∞∣f(t)e−(x0+n)t∣dtexist⇒∫0+∞f(t)e−(x0+n)tdtexist
Commented by ~blr237~ last updated on 06/Dec/19
sirL(f)(x0)existjustmeanthat∫0∞f(t)e−x0tdt<+∞thatconditionyouusedisjustsufficientcausealliff∈L1(R+)(∫0∞∣f(t)∣dt<+∞)thenL(f)(s)existforalls>0
Commented by mind is power last updated on 07/Dec/19
yessimplescvnotabsulute
Terms of Service
Privacy Policy
Contact: info@tinkutara.com