All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 21423 by Tinkutara last updated on 23/Sep/17
Provethatn4+4niscompositeforallintegervaluesofngreaterthan1.
Answered by dioph last updated on 24/Sep/17
Ifniseven,bothn4and4nareevenso2∣n4+4n.Ifnisodd,n=2m+1forsomem⩾1.Hence:n4+4n=(n2)2+(2n)2=(n2+2n)2−2n22n=(n2+2n)2−2n+1n2substitutingn=2m+1:n4+4n=(n2+22m+1)−22m+2n2==(n2+22m+1)2−(2m+1n)2==(n2+22m+1+2m+1n)(n2+22m+1−2m+1n)Asn4+4nispositiveandthefirstfactoraboveispositive,thesecondispositiveaswell.Itiseasynowtoseethatn2+22m+1−2m−1n==(n−2m)2+22m>1⇒⇒n4+4niscomposite
Commented by Tinkutara last updated on 25/Sep/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com