Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216841 by hardmath last updated on 22/Feb/25

Prove that:     δ(n) = Σ_(d/n)  𝛟(d) 𝛕((n/d))  𝛅(n) = Σ_(d/n)  d   ,   𝛕(n) = Σ_(d/n)  l   and   ϕ-Eyler.f

Provethat:δ(n)=dnφ(d)τ(nd)δ(n)=dnd,τ(n)=dnlandφEyler.f

Answered by MrGaster last updated on 23/Feb/25

Let f(n)=Σ_(d∣n) ϕ(d)τ((n/d))  ⇒,f(n)=Σ_(d∣n) ϕ(d)Σ_(k∣(n/d)) 1=Σ_(d∣n) ϕ(d)Σ_(k∣(n/d)) 1=Σ_(d∣n) ϕ(d)((n/d))  Σ_(d∣n) ϕ(d)=n  have:f(n)=Σ_(d∣n) ϕ(d)((n/d))=nΣ_(d∣n) ((ϕ(d))/d)  But Σ_(d∣n) =((ϕ(d))/d)=1  ⇒f(n)=n×1=n  ∴δ(n)=n

Letf(n)=dnφ(d)τ(nd),f(n)=dnφ(d)knd1=dnφ(d)knd1=dnφ(d)(nd)dnφ(d)=nhave:f(n)=dnφ(d)(nd)=ndnφ(d)dButdn=φ(d)d=1f(n)=n×1=nδ(n)=n

Commented by hardmath last updated on 23/Feb/25

  Excellent solution, thank you very much dear professor

Excellent solution, thank you very much dear professor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com