All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 13728 by prakash jain last updated on 22/May/17
Provethatn!>(n3)n
Answered by mrW1 last updated on 23/May/17
Usingmathematicalinduction:forn=1wehave1!=1>(13)1=13⇒truesupposedit′strueforn,i.e.n!>(n3)nforn+1wehave(n+1)!=(n+1)n!>(n+1)(n3)n=(n+13)n+1(3n+1)(3n+1×n3)n(n+1)=(n+13)n+13(nn+1)n>(n+13)n+1since3(nn+1)n>1(∗seeproof)soit′salsotrueforn+1.⇒it′strueforalln.
Commented by prakash jain last updated on 23/May/17
Thisisgreat.Prooffor3(nn+1)n>1Wecanseethat(nn+1)n>(n+1n+2)n+1andlimn→∞(n1+n)n=1e3e>1
Commented by mrW1 last updated on 23/May/17
That′sgoodidea!Iwantedtotrytoprove3(nn+1)n>1alsousingmathematicalinduction.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com