Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69231 by ~ À ® @ 237 ~ last updated on 21/Sep/19

Prove that  Σ_(p=0) ^∞   (((−1)^p )/(4p+1)) = ((π−argcoth((√2) ))/(4(√2)))  and  Σ_(p=0) ^(∞ )  (((−1)^p )/(4p+3)) = ((π+argcoth((√2) ))/(4(√2) ))

Provethatp=0(1)p4p+1=πargcoth(2)42andp=0(1)p4p+3=π+argcoth(2)42

Commented by mathmax by abdo last updated on 21/Sep/19

let s(x)=Σ_(n=0) ^∞  (((−1)^n )/(4n+1))x^(4n+1)  with  ∣x∣<1 ⇒s^′ (x)=Σ_(n=0) ^∞ (−1)^n x^(4n)   =Σ_(n=0) ^∞ (−x^4 )^n  =(1/(1+x^4 )) ⇒s(x) =∫_0 ^x  (dt/(1+t^4 )) +c  c=s(0)=0 ⇒s(x) =∫_0 ^x  (dt/(1+t^4 )) and Σ_(n=0) ^∞ (((−1)^n )/(4n+1)) =s(1)=∫_0 ^1   (dt/(t^4  +1))  let decompose F(t)=(1/(t^4  +1)) ⇒F(t)=(1/((t^2 +1)^2 −2t^2 ))  =(1/((t^2 +1+(√2)t)(t^2  +1−(√2)t))) =((at +b)/(t^2 +(√2)t +1)) +((ct+d)/(t^2 −(√2)t +1))  F(−t)=F(t) ⇒((−at+b)/(t^2 −(√2)t +1)) +((−ct+d)/(t^2 +(√2)t +1)) =F(t) ⇒  c=−a  and d=b ⇒  F(t) =((at+b)/(t^2 +(√2)t +1)) +((−at+b)/(t^2 −(√2)t +1))  F(o) =1 =2b ⇒b=(1/2)  F(1) =((a+b)/(2+(√2))) +((−a+b)/(2−(√2))) =(1/2) ⇒(((2−(√2))(a+b)+(2+(√2))(−a+b))/2)=(1/2)  ⇒(2−(√2))a +(2−(√2))b −(2+(√2))a+(2+(√2))b =1 ⇒  −2(√2)a +2 =1 ⇒a =(1/(2(√2))) ⇒  F(t) =(((1/(2(√2)))t +(1/2))/(t^2  +(√2)t +1)) +((−(1/(2(√2)))t+(1/2))/(t^2 −(√2)t +1))  =(1/(2(√2))){   ((t+(√2))/(t^2 +(√2)t+1)) −((t−(√2))/(t^2 −(√2)t +1))} ⇒  ∫_0 ^1  F(t)dt =(1/(4(√2))) ∫_0 ^1 ((2t+(√2)+(√2))/(t^2 +(√2)t +1))dt −(1/(4(√2))) ∫_0 ^1  ((2t−(√2)−(√2))/(t^2 −(√2)t +1))dt  =(1/(4(√2)))[ln(t^2 +(√2)t +1)]_0 ^(1 )   +(1/4) ∫_0 ^1   (dt/(t^2  +(√2)t +1))  −(1/(4(√2))) [ln(t^2 −(√2)t +1)]_0 ^1  +(1/4) ∫_0 ^1   (dt/(t^2 −(√2)t +1))  =(1/(4(√2))){ln(2+(√2))−ln(2−(√2)) +(1/4) { ∫_0 ^1   (...)dt +∫_0 ^1 (....)dt}  ∫_0 ^1   (dt/(t^2  +(√2)t +1)) =∫_0 ^1   (dt/(t^2  +2((√2)/2)t  +(1/2)+(1/2))) =∫_0 ^1   (dt/((t+(1/(√2)))^(2 ) +(1/2)))  =_(t+(1/(√2))=(u/(√2)))     2∫_1 ^(1+(√2))    (1/(u^2  +1)) (du/(√2)) =(√2)[arctan(u)]_1 ^(1+(√2))   =(√2){arctan(1+(√2))−(π/4)} =(√2){(π/2) −arctan((√2)−1)−(π/4)}  =(√2){(π/4)−(π/8)} =(√2)×(π/8)  ∫_0 ^1   (dt/(t^2 −(√2)t +1)) =∫_0 ^1  (dt/((t−(1/(√2)))^2  +(1/2))) =_(t−(1/(√2))=(u/(√2))) 2  ∫_(−1) ^((√2)−1)  (1/(u^2  +1))(du/(√2))  =(√2)[arctan(u)]_(−1) ^((√2)−1)  =(√2){(π/8) +(π/4)} =(√2)×((3π)/8) ⇒  ∫_0 ^1  F(t)dt =(1/(4(√2)))ln(((2+(√2))/(2−(√2)))) +(1/4){((π(√2))/8) +((3π(√2))/8)}  =(1/(4(√2)))ln(((4+4(√2)+2)/2))+(1/4)((π(√2))/2) =(1/(4(√2)))ln(3+2(√2))+((π(√2))/8) ⇒  Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) =(1/(4(√2)))ln(3+2(√2)) +((π(√2))/8)

lets(x)=n=0(1)n4n+1x4n+1withx∣<1s(x)=n=0(1)nx4n=n=0(x4)n=11+x4s(x)=0xdt1+t4+cc=s(0)=0s(x)=0xdt1+t4andn=0(1)n4n+1=s(1)=01dtt4+1letdecomposeF(t)=1t4+1F(t)=1(t2+1)22t2=1(t2+1+2t)(t2+12t)=at+bt2+2t+1+ct+dt22t+1F(t)=F(t)at+bt22t+1+ct+dt2+2t+1=F(t)c=aandd=bF(t)=at+bt2+2t+1+at+bt22t+1F(o)=1=2bb=12F(1)=a+b2+2+a+b22=12(22)(a+b)+(2+2)(a+b)2=12(22)a+(22)b(2+2)a+(2+2)b=122a+2=1a=122F(t)=122t+12t2+2t+1+122t+12t22t+1=122{t+2t2+2t+1t2t22t+1}01F(t)dt=142012t+2+2t2+2t+1dt142012t22t22t+1dt=142[ln(t2+2t+1)]01+1401dtt2+2t+1142[ln(t22t+1)]01+1401dtt22t+1=142{ln(2+2)ln(22)+14{01(...)dt+01(....)dt}01dtt2+2t+1=01dtt2+222t+12+12=01dt(t+12)2+12=t+12=u2211+21u2+1du2=2[arctan(u)]11+2=2{arctan(1+2)π4}=2{π2arctan(21)π4}=2{π4π8}=2×π801dtt22t+1=01dt(t12)2+12=t12=u221211u2+1du2=2[arctan(u)]121=2{π8+π4}=2×3π801F(t)dt=142ln(2+222)+14{π28+3π28}=142ln(4+42+22)+14π22=142ln(3+22)+π28n=0(1)n4n+1=142ln(3+22)+π28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com