All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 69231 by ~ À ® @ 237 ~ last updated on 21/Sep/19
Provethat∑∞p=0(−1)p4p+1=π−argcoth(2)42and∑∞p=0(−1)p4p+3=π+argcoth(2)42
Commented by mathmax by abdo last updated on 21/Sep/19
lets(x)=∑n=0∞(−1)n4n+1x4n+1with∣x∣<1⇒s′(x)=∑n=0∞(−1)nx4n=∑n=0∞(−x4)n=11+x4⇒s(x)=∫0xdt1+t4+cc=s(0)=0⇒s(x)=∫0xdt1+t4and∑n=0∞(−1)n4n+1=s(1)=∫01dtt4+1letdecomposeF(t)=1t4+1⇒F(t)=1(t2+1)2−2t2=1(t2+1+2t)(t2+1−2t)=at+bt2+2t+1+ct+dt2−2t+1F(−t)=F(t)⇒−at+bt2−2t+1+−ct+dt2+2t+1=F(t)⇒c=−aandd=b⇒F(t)=at+bt2+2t+1+−at+bt2−2t+1F(o)=1=2b⇒b=12F(1)=a+b2+2+−a+b2−2=12⇒(2−2)(a+b)+(2+2)(−a+b)2=12⇒(2−2)a+(2−2)b−(2+2)a+(2+2)b=1⇒−22a+2=1⇒a=122⇒F(t)=122t+12t2+2t+1+−122t+12t2−2t+1=122{t+2t2+2t+1−t−2t2−2t+1}⇒∫01F(t)dt=142∫012t+2+2t2+2t+1dt−142∫012t−2−2t2−2t+1dt=142[ln(t2+2t+1)]01+14∫01dtt2+2t+1−142[ln(t2−2t+1)]01+14∫01dtt2−2t+1=142{ln(2+2)−ln(2−2)+14{∫01(...)dt+∫01(....)dt}∫01dtt2+2t+1=∫01dtt2+222t+12+12=∫01dt(t+12)2+12=t+12=u22∫11+21u2+1du2=2[arctan(u)]11+2=2{arctan(1+2)−π4}=2{π2−arctan(2−1)−π4}=2{π4−π8}=2×π8∫01dtt2−2t+1=∫01dt(t−12)2+12=t−12=u22∫−12−11u2+1du2=2[arctan(u)]−12−1=2{π8+π4}=2×3π8⇒∫01F(t)dt=142ln(2+22−2)+14{π28+3π28}=142ln(4+42+22)+14π22=142ln(3+22)+π28⇒∑n=0∞(−1)n4n+1=142ln(3+22)+π28
Terms of Service
Privacy Policy
Contact: info@tinkutara.com