Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109914 by 1549442205PVT last updated on 26/Aug/20

Prove that tan142°30′+(√6)+(√3)−(√2)  is an integer.

Provethattan142°30+6+32isaninteger.

Answered by Dwaipayan Shikari last updated on 26/Aug/20

−tan(37.5)°=−tan((5π)/(24))  1−cos((5π)/(12))=2sin^2 ((5π)/(24))  tan((5π)/(24))=((sin((5π)/(24)))/(cos((5π)/(24))))=((2sin^2 ((5π)/(24)))/(2cos((5π)/(24))sin((5π)/(24))))=((1−cos((5π)/(12)))/(sin((5π)/(12))))=((1−(((√3)−1)/(2(√2))))/( (((√3)+1)/(2(√2)))))=((2(√2)−(√3)+1)/( (√3)+1))  =((2(√2)−(√3)+1)/( 2))((√3)−1)=((2(√6)−2(√2)−(4−2(√3)))/2)=(√6)−(√2)−2+(√3)  −tan((5π)/(24))=−(√6)+(√2)+2−(√3)  tan142.5°+(√6)+(√3)−(√2)=2

tan(37.5)°=tan5π241cos5π12=2sin25π24tan5π24=sin5π24cos5π24=2sin25π242cos5π24sin5π24=1cos5π12sin5π12=131223+122=223+13+1=223+12(31)=2622(423)2=622+3tan5π24=6+2+23tan142.5°+6+32=2

Commented by 1549442205PVT last updated on 27/Aug/20

Thank Sir.

ThankSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com