Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 122740 by Dwaipayan Shikari last updated on 19/Nov/20

Prove that  tanx=(2/(π−2x))−(2/(π+2x))+(2/(3x−2π))−(2/(3x+2π))+(2/(5x−2π))−(2/(5x+2π))+....

Provethattanx=2π2x2π+2x+23x2π23x+2π+25x2π25x+2π+....

Commented by Dwaipayan Shikari last updated on 19/Nov/20

sinx  has value 0 at 0,π,−π, 2π,−2π,....  So it can be written as products  sinx=Cx(π−x)(x+π)(2π−x)(x+2π)...  x→0  ((sinx)/(Cx))=(π−x)(x+π)(2π−x)...  ⇒(1/C)=π.π.2π.2π...  So   sinx=x(1−(x/π))(1+(x/π))(1−(x/(2π)))...  ((sinx)/x)=Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))  So in this manner   cosx=(1−((2x)/π))(1+((2x)/π))(1−((2x)/(3π)))(1+((2x)/(3π)))...  log(cosx)=log(1−((2x)/π))+log(1+((2x)/π))+...  −((sinx)/(cosx))=(((−2)/π)/(1−((2x)/π)))+((2/π)/(1+((2x)/π)))−((2/(3π))/(1−((2x)/(3π))))+...  tanx=(2/(π−2x))−(2/(π+2x))+(2/(3π−2x))−(2/(3π+2x))+(2/(5π−2x))−(2/(5π+2x))+...  tanx=(1/((π/2)−x))−(1/((π/2)+x))+(1/(((3π)/2)−x))−(1/(((3π)/2)+x))+(1/(((5π)/2)−x))−(1/(((5π)/2)+x))+...

sinxhasvalue0at0,π,π,2π,2π,....Soitcanbewrittenasproductssinx=Cx(πx)(x+π)(2πx)(x+2π)...x0sinxCx=(πx)(x+π)(2πx)...1C=π.π.2π.2π...Sosinx=x(1xπ)(1+xπ)(1x2π)...sinxx=n=1(1x2n2π2)Sointhismannercosx=(12xπ)(1+2xπ)(12x3π)(1+2x3π)...log(cosx)=log(12xπ)+log(1+2xπ)+...sinxcosx=2π12xπ+2π1+2xπ23π12x3π+...tanx=2π2x2π+2x+23π2x23π+2x+25π2x25π+2x+...tanx=1π2x1π2+x+13π2x13π2+x+15π2x15π2+x+...

Commented by Dwaipayan Shikari last updated on 19/Nov/20

I don′t have the justification for this proof. Is this right sir?

Idonthavethejustificationforthisproof.Isthisrightsir?

Commented by mindispower last updated on 19/Nov/20

cos(x)=sin((π/2)−x)  (d/dx)lncos(x)=−tg(x)

cos(x)=sin(π2x)ddxlncos(x)=tg(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com