All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 20297 by Tinkutara last updated on 25/Aug/17
Provethattheexpressionax2+2hxy+by2+2gx+2fy+c=0canberesolvedintotwolinearrationalfactorsifΔ=abc+2fgh−af2−bg2−ch2=0
Answered by ajfour last updated on 25/Aug/17
leta(x−x0)2+b(y−y0)2+2h(x−x0)(y−y0)=ax2+by2+2hxy2gx+2fy+c=0comparingcoefficientsofxandy,andconstanttermweget:ax0+hy0=−g.....(i)by0+hx0=−f......(ii)ax02+by02+2hx0y0=c(iii)using(i)and(ii)in(iii):⇒x0(−g−hx0)+y0(−f−hx0)+2hx0y0=corgx0+fy0=−c....(iv)(i),(ii),and(iv)formasystemofthreelinearequationsintwounknowns,hasuniquesolutiononlyif|ahghbfgfc|=0firstrowwegetfromcoefficientsofx,y,andconstanttermofequation(i),secondrow→(ii)thirdrow→(iv)⇒a(bc−f2)−h(ch−gf)+g(hf−bg)=0⇒abc+2fgh−af2−ch2−bg2=0.
Commented by Tinkutara last updated on 25/Aug/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com