All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 6716 by Tawakalitu. last updated on 15/Jul/16
Provethatthelocusofapointwhichmovesitsdistancefromthepoint(−b,0)isptimesitsdistancefromthepoint(b,0)is(p2−1)(x2+y2+b2)−2b(p2+1)x=0Showthatthislocusisacircleandfinditsradius.
Answered by Yozzii last updated on 16/Jul/16
LetpointsP,AandBhavecoordinates(x,y),(−b,0)and(b,0)respectively.Theinformationgives∣PA∣=p∣PB∣wherep>0.∣PA∣=(x+b)2+y2and∣PB∣=(x−b)2+y2.∴(x+b)2+y2=p(x−b)2+y2⇒((x+b)2+y2)2=(p(x−b)2+y2)2(x+b)2+y2=p2(x−b)2+p2y2x2+2bx+b2+y2=p2x2−2p2bx+p2b2+p2y2(p2−1)x2+(p2−1)y2+(p2−1)b2−2bx(1+p2)=0(p2−1)(x2+y2+b2)−2b(p2+1)x=0....(1)Equation(1)representsthelocusofPinrectangularcoordinates.−−−−−−−−−−−−−−−−−−−−−−−−Ifp≠±1,wecanrewrite(1)asx2+y2+b2−2(b(p2+1)p2−1)x=0x2−2(b(p2+1)p2−1)x+(b(p2+1)p2−1)2−(b(p2+1)p2−1)2+(y−0)2=0(x−b(p2+1)p2−1)2+(y−0)2=(b(p2+1)p2−1)2⇒(x−b(p2+1)p2−1)2+(y−0)2=∣bp2−1∣(p2+1)....(2)Theformof(2)impliesthatthedistancebetweenP(x,y)andthefixedpoint(b(p2+1)p2−1,0)isalwaysconstantasPmovesandb,pareconstants.Hence,thelocusofPisacircleanditsradiusis∣bp2−1∣(p2+1).
Commented by Tawakalitu. last updated on 16/Jul/16
Wowgreat.thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com