Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19900 by Tinkutara last updated on 17/Aug/17

Prove that this is an identity in x:  (((x−a)(x−b))/((c−a)(c−b)))+(((x−b)(x−c))/((a−b)(a−c)))+(((x−c)(x−a))/((b−c)(b−a)))=1

Provethatthisisanidentityinx:(xa)(xb)(ca)(cb)+(xb)(xc)(ab)(ac)+(xc)(xa)(bc)(ba)=1

Answered by Rasheed.Sindhi last updated on 17/Aug/17

−(((x−a)(x−b))/((c−a)(b−c)))−(((x−b)(x−c))/((a−b)(c−a)))−(((x−c)(x−a))/((b−c)(a−b)))=1    ((−(a−b)(x−a)(x−b)−(b−c)(x−b)(x−c)−(c−a)(x−c)(x−a))/((a−b)(b−c)(c−a)))=1  −(((a−b)(x^2 −(a+b)x+ab)+(b−c)(x^2 −(b+c)x+bc)+(c−a)(x^2 −(c+a)x+ca))/((a−b)(b−c)(c−a)))=1  −(([(a−b)+(b−c)+(c−a)]x^2 −[(a^2 −b^2 )+(b^2 −c^2 )+(c^2 −a^2 )]x+ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((0x^2 −0x+ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((a^2 b−ab^2 +b^2 c−bc^2 +c^2 a−ca^2 )/((a−b)(b−c)(c−a)))=1  −((a^2 b−ab^2 +b^2 c−ca^2 −bc^2 +c^2 a)/((a−b)(b−c)(c−a)))=1  −((ab(a−b)−c(a^2 −b^2 )+c^2 (a−b))/((a−b)(b−c)(c−a)))=1  −(((a−b)[ab−c(a+b)+c^2 ])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c^2 −ca−cb+ab])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c(c−a)−b(c−a)])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c(c−a)−b(c−a)])/((a−b)(b−c)(c−a)))=1  −(((a−b)(c−b)(c−a))/((a−b)(b−c)(c−a)))=1  (((a−b)(b−c)(c−a))/((a−b)(b−c)(c−a)))=1     1=1  Free of x.   I.e the equation is true for all  values of x.  That means the given equation  is an identity in x.

(xa)(xb)(ca)(bc)(xb)(xc)(ab)(ca)(xc)(xa)(bc)(ab)=1(ab)(xa)(xb)(bc)(xb)(xc)(ca)(xc)(xa)(ab)(bc)(ca)=1(ab)(x2(a+b)x+ab)+(bc)(x2(b+c)x+bc)+(ca)(x2(c+a)x+ca)(ab)(bc)(ca)=1[(ab)+(bc)+(ca)]x2[(a2b2)+(b2c2)+(c2a2)]x+ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=10x20x+ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=1ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=1a2bab2+b2cbc2+c2aca2(ab)(bc)(ca)=1a2bab2+b2cca2bc2+c2a(ab)(bc)(ca)=1ab(ab)c(a2b2)+c2(ab)(ab)(bc)(ca)=1(ab)[abc(a+b)+c2](ab)(bc)(ca)=1(ab)[c2cacb+ab](ab)(bc)(ca)=1(ab)[c(ca)b(ca)](ab)(bc)(ca)=1(ab)[c(ca)b(ca)](ab)(bc)(ca)=1(ab)(cb)(ca)(ab)(bc)(ca)=1(ab)(bc)(ca)(ab)(bc)(ca)=11=1Freeofx.I.etheequationistrueforallvaluesofx.Thatmeansthegivenequationisanidentityinx.

Commented by Tinkutara last updated on 17/Aug/17

Thank you very much Sir!

ThankyouverymuchSir!

Answered by ajfour last updated on 17/Aug/17

T_1 +T_2 =(((b−a)(x−a)(x−b)+(c−b)(x−b)(x−c))/((a−b)(b−c)(c−a)))  =(((x−b)[x(c−a)−ab+a^2 +bc−c^2 ])/((a−b)(b−c)(c−a)))  =(((x−b)[x(c−a)+b(c−a)−(c+a)(c−a)])/((a−b)(b−c)(c−a)))  =(((x−b)(x+b−a−c))/((a−b)(b−c)))  =(([x^2 −(a+c)x+ac]+[−b^2 +ab+bc−ac])/((a−b)(b−c)))  =(((x−c)(x−a))/((a−b)(b−c)))+(((a−b)(b−c))/((a−b)(b−c)))  T_1 +T_2 =−T_3 +1  or     T_1 +T_2 +T_3 =1   (T_i   being the i^(th)  term on l.h.s. ) .

T1+T2=(ba)(xa)(xb)+(cb)(xb)(xc)(ab)(bc)(ca)=(xb)[x(ca)ab+a2+bcc2](ab)(bc)(ca)=(xb)[x(ca)+b(ca)(c+a)(ca)](ab)(bc)(ca)=(xb)(x+bac)(ab)(bc)=[x2(a+c)x+ac]+[b2+ab+bcac](ab)(bc)=(xc)(xa)(ab)(bc)+(ab)(bc)(ab)(bc)T1+T2=T3+1orT1+T2+T3=1(Tibeingtheithtermonl.h.s.).

Commented by Tinkutara last updated on 17/Aug/17

Thank you very much Sir! This  reduced calculation to an extent.

ThankyouverymuchSir!Thisreducedcalculationtoanextent.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com