All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 158245 by HongKing last updated on 01/Nov/21
Provethat:(x−1)2x+x+1x2+1⩾2;∀x>0
Answered by mindispower last updated on 02/Nov/21
t→f2tg(t)isbijection,[0,π2[→f[0,+∞[x=tg(t)⇔cos(t)sin(t)(1−2sin(t)cos(t)cos2(x))+sin(t)+cos(t)⩾21cos(t)sin(t)+sin(t)+cos(t)⩾2+2,∀t∈[0,π2[cos(t)sin(t)+sin(t)+sin(t)cos(t)+cos(t)⩾2+2a=sin(t),b=cos(t){a2+b2=1ab+ba+a+b∣.=f(a,b)⩾2+2⇔1ab+a+b⩾2+2⇔1ab+a+b⩾2+2f(a,b)=1ab+a+b−γ(a2+b2−1)1b(−1a2)+1−2γa=01a(−1b2)+1−2γb=01b+1a−2γ(ab+ba)=0bγ=a+b2−1b2+a−b+1a2=0b2−a2+a2b2(a−b)=0−(a−b)(a+b+a2b2)=0⇒a=b=12Min(f)=f(12,12)=112+12+12=2+2
Commented by HongKing last updated on 02/Nov/21
perfectmydearSer,thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com