Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 19292 by Tinkutara last updated on 08/Aug/17

Prove the equality  sin (π/(2n)) sin ((2π)/(2n)) ... sin (((n − 1)π)/(2n)) = ((√n)/2^(n−1) ) .

Provetheequalitysinπ2nsin2π2n...sin(n1)π2n=n2n1.

Commented by prakash jain last updated on 09/Aug/17

you can try with the following  substitution  sin (π/(2n))=((e^((iπ)/(2n)) −e^(−((iπ)/(2n))) )/(2i))

youcantrywiththefollowingsubstitutionsinπ2n=eiπ2neiπ2n2i

Answered by Tinkutara last updated on 23/Aug/17

x^(2n) −1=(x−1)(x−α)(x−α^2 )....(x−α^(2n−1) ) where α = e^(((2π)/(2n))i)  = e^((π/n)i)   On differentiating both sides,  2nx^(2n−1) =(x−α)(x−α^2 )....(x−α^(2n−1) )  +(x−1)(x−α^2 )(x−α^3 )....(x−α^(2n−1) )  +(x−1)(x−α)(x−α^3 )....+....  Put x = 1  2n=(1−α)(1−α^2 )(1−α^3 )....(1−α^(2n−1) )  Since 1 − e^(iθ)  = 2 sin (θ/2) e^(((θ/2) − (π/2))i)   2n=(1−e^((π/n)i) )(1−e^(((2π)/n)i) )(1−e^(((3π)/n)i) )....(1−e^((π/n)(2n−1)i) )  =2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^(((π/(2n))−(π/2))i) e^((((2π)/(2n))−(π/2))i) ....e^((((π(2n−1))/(2n))−(π/2))i)   =2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^(i[(π/(2n))(((2n(2n−1))/2))−(2n−1)(π/2)])   2n=2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^0   ((2n)/2^(2n−1) )=sin(π/(2n))sin((2π)/(2n))....sin(((n−1)π)/(2n))sin((nπ)/(2n))....sin(π/(2n))  (n/2^(2n−2) ) = sin^2  (π/(2n)) sin^2  ((2π)/(2n)) .... sin^2  (((n−1)π)/(2n))  ((√n)/2^(n−1) ) = sin (π/(2n)) sin ((2π)/(2n)) .... sin (((n−1)π)/(2n))

x2n1=(x1)(xα)(xα2)....(xα2n1)whereα=e2π2ni=eπniOndifferentiatingbothsides,2nx2n1=(xα)(xα2)....(xα2n1)+(x1)(xα2)(xα3)....(xα2n1)+(x1)(xα)(xα3)....+....Putx=12n=(1α)(1α2)(1α3)....(1α2n1)Since1eiθ=2sinθ2e(θ2π2)i2n=(1eπni)(1e2πni)(1e3πni)....(1eπn(2n1)i)=22n1sinπ2nsin2π2n....sin(2n1)π2ne(π2nπ2)ie(2π2nπ2)i....e(π(2n1)2nπ2)i=22n1sinπ2nsin2π2n....sin(2n1)π2nei[π2n(2n(2n1)2)(2n1)π2]2n=22n1sinπ2nsin2π2n....sin(2n1)π2ne02n22n1=sinπ2nsin2π2n....sin(n1)π2nsinnπ2n....sinπ2nn22n2=sin2π2nsin22π2n....sin2(n1)π2nn2n1=sinπ2nsin2π2n....sin(n1)π2n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com