Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100653 by Ar Brandon last updated on 28/Jun/20

Answered by mathmax by abdo last updated on 28/Jun/20

1) f(x) =((sin(nx))/(sinx)) is continue  on]0,(π/2)] ⇒ integrable at V(0) we have  f(x)∼((nx)/x) =n so  I_n exist  2)I_n  −I_(n−2) =∫_0 ^(π/2)  ((sin(nx)−sin(n−2)x)/(sinx))dx  sinp −sinq =sinp +sin(−q) =cos((π/2)−p) +cos((π/2) +q)  =2cos(((π−p+q)/2)) cos(((−p−q)/2)) =2cos((π/2)−((p−q)/2))cos(((p+q)/2))  =2cos(((p+q)/2))sin(((p−q)/2)) ⇒sin(nx)−sin(n−2)x =2 cos(((nx+nx−2x)/2))sin(((nx−nx+2x)/2))  =2cos(n−1)x sinx ⇒I_n −I_(n−2) =2∫_0 ^(π/2)  cos(n−1)x dx  =2[(1/(n−1))sin(n−1)x]_0 ^(π/2)  =(2/(n−1))sin(n−1)(π/2) =(2/(n−1)) sin(((nπ)/2)−(π/2))  =−(2/(n−1))cos(((nπ)/2))   (n≥2) ⇒I_2 −I_0 =−(2/1)cos(π) =2 but I_0 =0 ⇒I_2 =2  3)we have I_n −I_(n−2) =−(2/(n−1)) cos(((nπ)/2)) ⇒I_(2n) −I_(2n−2) =−((2(−1)^n )/(n−1)) ⇒  Σ_(k=2) ^n  (I_(2k) −I_(2k−2) ) =2 Σ_(k=2) ^n  (((−1)^(k−1) )/(k−1)) ⇒  I_4  −I_2  +I_6 −I_4  +....I_(2n)  −I_(2n−2) =2 Σ_(k=2) ^n  (((−1)^(k−1) )/(k−1)) ⇒  I_(2n) =I_2  +2Σ_(k=2) ^n  (((−1)^(k−1) )/(k−1)) =2 +2Σ_(k=1) ^(n−1)  (((−1)^k )/k)   I_(2n+1) −I_(2n−1) =−(2/(2n)) cos((((2n+1)π)/2)) =−(1/n)cos(nπ +(π/2)) =0 ⇒  I_(2n+1) =I_(2n−1)  =I_1 =(π/2)

1)f(x)=sin(nx)sinxiscontinueon]0,π2]integrableatV(0)wehavef(x)nxx=nsoInexist2)InIn2=0π2sin(nx)sin(n2)xsinxdxsinpsinq=sinp+sin(q)=cos(π2p)+cos(π2+q)=2cos(πp+q2)cos(pq2)=2cos(π2pq2)cos(p+q2)=2cos(p+q2)sin(pq2)sin(nx)sin(n2)x=2cos(nx+nx2x2)sin(nxnx+2x2)=2cos(n1)xsinxInIn2=20π2cos(n1)xdx=2[1n1sin(n1)x]0π2=2n1sin(n1)π2=2n1sin(nπ2π2)=2n1cos(nπ2)(n2)I2I0=21cos(π)=2butI0=0I2=23)wehaveInIn2=2n1cos(nπ2)I2nI2n2=2(1)nn1k=2n(I2kI2k2)=2k=2n(1)k1k1I4I2+I6I4+....I2nI2n2=2k=2n(1)k1k1I2n=I2+2k=2n(1)k1k1=2+2k=1n1(1)kkI2n+1I2n1=22ncos((2n+1)π2)=1ncos(nπ+π2)=0I2n+1=I2n1=I1=π2

Commented by mathmax by abdo last updated on 28/Jun/20

error at I_(2n)     we have I_n −I_(n−2) =((−2(−1)^n )/(n−1)) ⇒I_(2n) −I_(2n−2) =((−2(−1)^n )/(2n−1))  ⇒Σ_(k=1) ^n  (I_(2k) −I_(2k−2) ) =2 Σ_(k=1) ^n  (((−1)^(k−1) )/(2k−1)) ⇒  I_(2n) −I_0 =2  Σ_(k=1) ^n  (((−1)^(k−1) )/(2k−1)) but I_0 =0 ⇒ I_(2n) =2 Σ_(k=1) ^n  (((−1)^(k−1) )/(2k−1))  =2 Σ_(k=0) ^(n−1)  (((−1)^k )/(2k+1)) and we see thst lim_(n→+∞)  I_(2n) =(π/2)

erroratI2nwehaveInIn2=2(1)nn1I2nI2n2=2(1)n2n1k=1n(I2kI2k2)=2k=1n(1)k12k1I2nI0=2k=1n(1)k12k1butI0=0I2n=2k=1n(1)k12k1=2k=0n1(1)k2k+1andweseethstlimn+I2n=π2

Commented by Ar Brandon last updated on 28/Jun/20

Thank you Sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com