All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 102178 by dw last updated on 07/Jul/20
Answered by 1549442205 last updated on 07/Jul/20
Puttingx=tanα,y=tanβwehave1+x2=1+tan2α=1cosα,1+y2=1cosβx1+y2+y1+x2=tamαcosβ+tanβcosα=sinα+sinβcosαcosβ.Hence,LHS=1cosαcosβ1+(sinα+sinβcosαcosβ)2+1cosαcosβ1+(sinα−sinβcosαcosβ)2=1cosαcosβcos2αcos2β+(sinα+sinβ)2+1cosαcosβcos2αcos2β+(sinα−sinβ)2wehave:cos2αcos2β=(1−sin2α)(1−sin2β)=1+sin2αsin2β−sin2α−sin2β,so=cos2αcos2β+(sinα+sinβ)2=1+sin2αsin2β+2sinαsinβ=(sinαsinβ+1)2=1+sinαsinβSimilarly,=cos2αcos2β+(sinα−sinβ)2=1−sinαsinβTherefore,LHS=1cosαcosβ[(1+sinαsinβ)−(1−sinαsinβ)]=2sinαsinβcosαcosβ=2tanαtanβ=2xyThus,LHS=RHS(q.e.d)
Commented by dw last updated on 07/Jul/20
Thankyou!Yoursolutionisverygood.
Commented by dw last updated on 16/Jul/20
butIdidnotunderstand!1cosαcosβ[(1+sinαsinβ)−(1−sinαsinβ)]=1cosαcosβ[(1+sinαsinβ)+(1−sinαsinβ)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com