Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 102836 by ajfour last updated on 11/Jul/20

Commented by ajfour last updated on 11/Jul/20

△ABC is equilateral with side a.  If regions 1,2,3 have equal  perimeters, find x/a.

ABCisequilateralwithsidea.Ifregions1,2,3haveequalperimeters,findx/a.

Answered by mr W last updated on 11/Jul/20

CD=p  CE=q  DE=(√(p^2 +q^2 −2pq cos 60°))=(√(p^2 +q^2 −pq))  BE=(√(a^2 +(a−q)^2 −2a(a−q) cos 60°))=(√(a^2 +(a−q)^2 −a(a−q)))  P_1 =p+q+(√(p^2 +q^2 −pq))  P_2 =a−p+(√(p^2 +q^2 −pq))+(√(a^2 +(a−q)^2 −a(a−q)))  P_3 =2a−q+(√(a^2 +(a−q)^2 −a(a−q)))  P_3 =P_2 :  2a−q=a−p+(√(p^2 +q^2 −pq))  a+p−q=(√(p^2 +q^2 −pq))  a^2 +2a(p−q)−pq=0  with α=(p/a), β=(q/a)  ⇒2(α−β)−αβ+1=0   ...(i)    P_1 =P_2 :  p+q=a−p+(√(a^2 +(a−q)^2 −a(a−q)))  2p+q−a=(√(a^2 +(a−q)^2 −a(a−q)))  4p^2 +4pq−4ap−aq=0  ⇒4α^2 +4αβ−4α−β=0   ...(ii)    from (i) and (ii):  β=((2α+1)/(α+2))=((4α(1−α))/(4α−1))  ⇒4α^3 +12α^2 −6α−1=0  we get:  α=0.5504, β=0.8237  (x/a)=1−α=0.4496

CD=pCE=qDE=p2+q22pqcos60°=p2+q2pqBE=a2+(aq)22a(aq)cos60°=a2+(aq)2a(aq)P1=p+q+p2+q2pqP2=ap+p2+q2pq+a2+(aq)2a(aq)P3=2aq+a2+(aq)2a(aq)P3=P2:2aq=ap+p2+q2pqa+pq=p2+q2pqa2+2a(pq)pq=0withα=pa,β=qa2(αβ)αβ+1=0...(i)P1=P2:p+q=ap+a2+(aq)2a(aq)2p+qa=a2+(aq)2a(aq)4p2+4pq4apaq=04α2+4αβ4αβ=0...(ii)from(i)and(ii):β=2α+1α+2=4α(1α)4α14α3+12α26α1=0weget:α=0.5504,β=0.8237xa=1α=0.4496

Commented by ajfour last updated on 11/Jul/20

SUPERB!  Sir, Great solution,  thanks a lot.

SUPERB!Sir,Greatsolution,thanksalot.

Answered by 1549442205 last updated on 11/Jul/20

Commented by 1549442205 last updated on 12/Jul/20

Putting BD=m,CE=n,BC=aWe need  find(x/a)= (m/a).From the cosine theorem we   get DE=(√(n^2 +(a−m)^2 −n(a−m)))  BE=(√(a^2 +(a−n)^2 −a(a−n))) .From   the hypothesis p(ΔABE)=p(ΔBDE)  we get AB+AE=BD+DE  ⇔a+a−n=m+(√((a−m)^2 +n^2 −n(a−m)))  ⇔(2a−n−m)^2 =(a−m)^2 +n^2 −n(a−m)  ⇔4a^2 +n^2 +m^2 −4an−4am+2mn=  a^2 −2am+m^2 +n^2 −an+mn  ⇔3a^2 −3an−2am+mn=0(1)  p(ΔBDE)=p(ΔCDE)⇔BD+BE=CD+CE  ⇔m+(√(a^2 +(a−n)^2 −a(a−n)))=a−m+n  ⇔a^2 +(a−n)^2 −a(a−n)=(a+n−2m)^2   ⇔a^2 −an+n^2 =a^2 +n^2 +4m^2 +2an−4am−4mn  ⇔4m^2 +3an−4am−4mn=0(2)  From (1) we get n=((3a^2 −2am)/(3a−m))(∗).Replace  into (2) we get  4m^2 +(3a−4m)×((3a^2 −2am)/(3a−m))−4am=0  ⇔12am^2 −4m^3 +9a^3 −18a^2 m+8am^2 −12a^2 m+4am^2 =0  ⇔4m^3 +30a^2 m−2am^2 −9a^3 =0  ⇔4((m/a))^3 −24((m/a))^2 +30((m/a))−9=0  ⇔(x/a)=(m/a)=0.4495847837  From(∗) we get:   y=(n/a)=2−(3/(3−(m/a)))=0.823720452

PuttingBD=m,CE=n,BC=aWeneedfindxa=ma.FromthecosinetheoremwegetDE=n2+(am)2n(am)BE=a2+(an)2a(an).Fromthehypothesisp(ΔABE)=p(ΔBDE)wegetAB+AE=BD+DEa+an=m+(am)2+n2n(am)(2anm)2=(am)2+n2n(am)4a2+n2+m24an4am+2mn=a22am+m2+n2an+mn3a23an2am+mn=0(1)p(ΔBDE)=p(ΔCDE)BD+BE=CD+CEm+a2+(an)2a(an)=am+na2+(an)2a(an)=(a+n2m)2a2an+n2=a2+n2+4m2+2an4am4mn4m2+3an4am4mn=0(2)From(1)wegetn=3a22am3am().Replaceinto(2)weget4m2+(3a4m)×3a22am3am4am=012am24m3+9a318a2m+8am212a2m+4am2=04m3+30a2m2am29a3=04(ma)324(ma)2+30(ma)9=0xa=ma=0.4495847837From()weget:y=na=233ma=0.823720452

Commented by ajfour last updated on 12/Jul/20

thanks Sir, excellent.

thanksSir,excellent.

Commented by 1549442205 last updated on 13/Jul/20

You are welcome sir.

Youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com