Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 103345 by harckinwunmy last updated on 14/Jul/20

Commented by harckinwunmy last updated on 14/Jul/20

please help

pleasehelp

Commented by Dwaipayan Shikari last updated on 14/Jul/20

2∫_0 ^0 (((2t)/(1+t^2 ))/((5/4)−((1−t^2 )/(1+t^2 )))) .(1/(1+t^2 ))dt=0   {take tan(θ/2)=t

2002t1+t2541t21+t2.11+t2dt=0{taketanθ2=t

Commented by mathmax by abdo last updated on 14/Jul/20

not correct sir you must have a bijection...!

notcorrectsiryoumusthaveabijection...!

Commented by Dwaipayan Shikari last updated on 14/Jul/20

∫_0 ^0 f(x)dx=0

00f(x)dx=0

Commented by mathmax by abdo last updated on 15/Jul/20

tan is bijective on ]−(π/2),(π/2)[ not [0,2π] be carefull

tanisbijectiveon]π2,π2[not[0,2π]becarefull

Answered by abdomathmax last updated on 14/Jul/20

Q2    (∂u/∂x)(x,y) =((1(x^2 +y^2 )−2x(x−y))/((x^2 +y^2 )^2 ))  =((−x^2 +y^2 +2xy)/((x^2  +y^2 )^2 ))  (∂^2 u/∂x^2 )(x,y) =(((−2x+2y)(x^2  +y^2 )^2  −2(2x)(x^2  +y^2 ))/((x^2  +y^2 )^4 ))  =(((−2x+2y)(x^2 +y^2 )−4x)/((x^2  +y^2 )^3 ))  =((−2x^3 −2xy^2 +2yx^2 −4x)/((x^2  +y^2 )^3 ))  after we calculate  (∂^2 u/∂y^2 )(x,y) and prove that (∂^2 u/∂x^2 ) +(∂^2 u/∂y^2 ) =0

Q2ux(x,y)=1(x2+y2)2x(xy)(x2+y2)2=x2+y2+2xy(x2+y2)22ux2(x,y)=(2x+2y)(x2+y2)22(2x)(x2+y2)(x2+y2)4=(2x+2y)(x2+y2)4x(x2+y2)3=2x32xy2+2yx24x(x2+y2)3afterwecalculate2uy2(x,y)andprovethat2ux2+2uy2=0

Answered by abdomathmax last updated on 14/Jul/20

let I =∫_0 ^5 (25−t^2 )^(3/2)  dt we do the changeme7t  t =5x ⇒ I  =∫_0 ^1 (25−25x^2 )^(3/2)  5dx  =5.(5^2 )^(3/(2 ))  ∫_0 ^1 (1−x^2 )^(3/2)  dx   =_(x =u^(1/2) )     5^(4 )  ∫_0 ^1 (1−u)^(3/2)  (1/2)u^(−(1/2))  du  =(5^4 /2) ∫_0 ^1 u^(−(1/2)) (1−u)^(3/2)  du we havd  B(p,q) =∫_0 ^1   x^(p−1) (1−x)^(q−1)  dx  p−1 =−(1/2) ⇒p =(1/2) and q−1 =(3/2) ⇒q =1+(3/2)=(5/2)  ⇒ I =(5^4 /2) ×B((1/2),(5/2)) .

letI=05(25t2)32dtwedothechangeme7tt=5xI=01(2525x2)325dx=5.(52)3201(1x2)32dx=x=u125401(1u)3212u12du=54201u12(1u)32duwehavdB(p,q)=01xp1(1x)q1dxp1=12p=12andq1=32q=1+32=52I=542×B(12,52).

Answered by abdomathmax last updated on 14/Jul/20

A =∫_0 ^(2π)  ((sinθ)/((5/4)−cosθ))dθ ⇒A =4∫_0 ^(2π )  ((sinθ)/(5−4cosθ))dθ  changement e^(iθ)  =z  give  A =4 ∫_(∣z∣=1)    (((z−z^(−1) )/(2i))/(5−4×((z+z^(−1) )/2)))×(dz/(iz))  =−2 ∫_(∣z∣=1) ((2(z−z^(−1) ))/(z(10−4z−4z^(−1) )))dz  =−4 ∫_(∣z∣=1)   ((z−z^(−1) )/(10z−4z^2 −4z))dz  =4 ∫_(∣z∣=1)      ((z^2 −1)/(z(4z^2 −10z +4)))dz  =2 ∫_(∣z∣=1)   ((z^2 −1)/(z(2z^2 −5z +2)))dz  let ϕ(z) =((z^2 −1)/(z{2z^2 −5z +2}))  poles of ϕ?  2z^2 −5z +2 =0 →Δ =25−16 =9 ⇒  z_1 =((5+3)/4) =2   and z_2 =((5−3)/4) =(1/2)  ∫_(∣z∣ =1) ϕ(z)dz =2iπ {Res(ϕ,0) +Res(ϕ,z_2 )}  ϕ(z) =((z^2 −1)/(2z(z−2)(z−(1/2))))  Res(ϕ,0) =lim_(z→0) zϕ(z) =−(1/2)  Res(ϕ,(1/2)) =lim_(z→(1/2))   (z−(1/2))ϕ(z)  =(((1/4)−1)/(2×(1/2)((1/2)−2))) =−(3/4)×(1/(−(3/2))) =(1/2) ⇒  ∫_(∣z∣=1) ϕ(z)dz =0 ⇒ A =0

A=02πsinθ54cosθdθA=402πsinθ54cosθdθchangementeiθ=zgiveA=4z∣=1zz12i54×z+z12×dziz=2z∣=12(zz1)z(104z4z1)dz=4z∣=1zz110z4z24zdz=4z∣=1z21z(4z210z+4)dz=2z∣=1z21z(2z25z+2)dzletφ(z)=z21z{2z25z+2}polesofφ?2z25z+2=0Δ=2516=9z1=5+34=2andz2=534=12z=1φ(z)dz=2iπ{Res(φ,0)+Res(φ,z2)}φ(z)=z212z(z2)(z12)Res(φ,0)=limz0zφ(z)=12Res(φ,12)=limz12(z12)φ(z)=1412×12(122)=34×132=12z∣=1φ(z)dz=0A=0

Answered by 1549442205 last updated on 15/Jul/20

Q3.F=∫((sinθ)/((5/4)−cosθ))dθ=−∫((dcosθ)/((5/4)−cosθ))=_(u=cos𝛉)        ∫(du/(u−(5/4)))  .∫((d(u−(5/4)))/(u−(5/4)))=ln∣u−(5/4)∣=ln((5/4)−cosθ)∣_0 ^(2π)   =ln((1/4))−ln((1/4))=0  Q2.b/∫_0 ^5 (25−t^2 )^(3/2) dt=F.Put t=5sinθ  ⇒dt=5cosθdθ.Then   F=∫_0 ^(π/2) (25cos^2 θ)^(3/2) 5cosθdθ=625∫_0 ^(π/2) (cosθ)^4 dθ  =((625)/2)∫_0 ^(π/2) 2(sinθ)^(2.(1/2)−1) (cosθ)^(2.(5/2)−1) dθ  =((625)/2)B((5/2),(1/2))=((625)/2)×((Γ((5/2)).Γ((1/2)))/(Γ((5/2)+(1/2))))  =((625)/2)×((((3(√π))/4)×(√π))/(Γ(3)))=((625π)/8)×(3/2)(as  Γ(3)=2!)  Thus,F=((1875𝛑)/(16))

Q3.F=sinθ54cosθdθ=dcosθ54cosθ=u=cosθduu54.d(u54)u54=lnu54∣=ln(54cosθ)02π=ln(14)ln(14)=0Q2.b/05(25t2)32dt=F.Putt=5sinθdt=5cosθdθ.ThenF=0π2(25cos2θ)325cosθdθ=6250π2(cosθ)4dθ=62520π22(sinθ)2.121(cosθ)2.521dθ=6252B(52,12)=6252×Γ(52).Γ(12)Γ(52+12)=6252×3π4×πΓ(3)=625π8×32(asΓ(3)=2!)Thus,F=1875π16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com