Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 103879 by abony1303 last updated on 18/Jul/20

Commented by abony1303 last updated on 18/Jul/20

Please, help

Please,help

Commented by myear last updated on 18/Jul/20

plain

Answered by Ar Brandon last updated on 18/Jul/20

(n/(2n^3 +1))=(n/(((2)^(1/3) n+1)((4)^(1/3) n^2 −(2)^(1/3) n+1)))                =(a/((2)^(1/3) n+1))+((bn+c)/((4)^(1/3) n^2 −(2)^(1/3) n+1))                =((a((4)^(1/3) n^2 −(2)^(1/3) n+1)+(bn+c)((2)^(1/3) n+1))/(((2)^(1/3) n+1)((4)^(1/3) n^2 −(2)^(1/3) n+1)))  (4)^(1/3) a+(2)^(1/3) b=0 , a+c=0 , −(2)^(1/3) a+b+(2)^(1/3) c=1  ⇒b−2(2)^(1/3) a=1 ⇒ 3(4)^(1/3) a=−(2)^(1/3) ⇒a=((−1)/(3(2)^(1/3) )) , c=(1/(3(2)^(1/3) )) , b=(1/3)  ⇒(n/(2n^3 +1))=((−1/3(2)^(1/3) )/((2)^(1/3) n+1))+((n/3+1/3(2)^(1/3) )/((4)^(1/3) n^2 −(2)^(1/3) n+1))  Σ_(n=1) ^∞ (n/(2n^3 +1))=Σ_(n=1) ^∞ {((n/3+1/3(2)^(1/3) )/((4)^(1/3) n^2 −(2)^(1/3) n+1))−((1/3(2)^(1/3) )/((2)^(1/3) n+1))}    Any idea to proceed ?

n2n3+1=n(23n+1)(43n223n+1)=a23n+1+bn+c43n223n+1=a(43n223n+1)+(bn+c)(23n+1)(23n+1)(43n223n+1)43a+23b=0,a+c=0,23a+b+23c=1b223a=1343a=23a=1323,c=1323,b=13n2n3+1=1/32323n+1+n/3+1/32343n223n+1n=1n2n3+1=n=1{n/3+1/32343n223n+11/32323n+1}Anyideatoproceed?

Answered by ~blr237~ last updated on 19/Jul/20

Let state  f(z)=(z/(z^3 +a^3 ))  g(z)=(π/(tan(πz)))     a>0  P(fg)={−a,aw_0 ,aw_1 ,−n,n /    n∈N ,w_0 =e^(i(π/3)) .....}  let state   points A(−in),B(−n+in),C(n+in) D(in)  for n≥0  δ_n =ABCDis a rectangle (close way) and   f(z)=O((1/(∣z∣^2 )))  (•)  The residus theorems allows us to say  ∫_δ_n  f(z)g(z)dz= 2πi Σ_(x∈P(fg)) ind(δ_n ,x)Res(fg,x)=2πi(Σ_(k=0) ^n f(k) +Res(fg, aw_0 )+Res(fg,aw_1 )]   because   (•) prove that  the first term →0 when n→∞   So  S=Σ_(n=0) ^∞ f(n)= −[((aw_0 g(aw_0 ))/(3(aw_0 )^2 )) +((aw_1 g(aw_1 ))/(3(aw_1 )^2 ))]  S=−(2/3) Re(((aw_0 g(aw_0 ))/((aw_0 )^2 )))   cause  w_(1 ) =w_0 ^−    and  g(z^− )=g^− (z)  S=−((2π)/(3a)) Re((1/(   w_0 tan(πaw_0 ))))         tan(πw_0 )=  −i ((e^(i2aπw_0 ) −1)/(e^(i2πaw_0 ) +1))   and 2πaiw_0 =2iπa((1/2)+i((√3)/2))=−π(√3) +iπa  tan(πw_0 )=−i ((e^(iπa) e^(−π(√3)) +1)/(e^(iπa) e^(−π(√3)) −1))=−i((e^(−2π(√3)) −1−2ie^(−π(√3)) sin(πa))/(e^(−2π(√3)) +1−2cos(πa)e^(−π(√3)) ))  S=((πe^(π(√3)) )/(6a(e^(−2π(√3)) +1−2e^(−π(√3)) cos(πa))))   Re( (((√3)+i)/(sh(π(√3))+isin(πa))))  S=((πe^(2π(√3)) )/(12a(ch(π(√3))−cos(πa))) ×(((√3) sh(π(√3))−sin(πa))/(sh^2 (π(√3))+sin^2 (πa)))         Finally                                         S(a)= Σ_(n=1) ^∞   (n/(n^3 + a^3 )) = ((π(√3)e^(2π(√3)) (sh(π(√3))−sin(πa)))/(12a(ch(π(√3))−cos(πa))(sh^2 (π(√3))+sin^2 (πa))))      a>0    Let   deduce your by    (1/2) S(^3 (√2)) .

Letstatef(z)=zz3+a3g(z)=πtan(πz)a>0P(fg)={a,aw0,aw1,n,n/nN,w0=eiπ3.....}letstatepointsA(in),B(n+in),C(n+in)D(in)forn0δn=ABCDisarectangle(closeway)andf(z)=O(1z2)()Theresidustheoremsallowsustosayδnf(z)g(z)dz=2πixP(fg)ind(δn,x)Res(fg,x)=2πi(nk=0f(k)+Res(fg,aw0)+Res(fg,aw1)]because()provethatthefirstterm0whennSoS=n=0f(n)=[aw0g(aw0)3(aw0)2+aw1g(aw1)3(aw1)2]S=23Re(aw0g(aw0)(aw0)2)causew1=w0andg(z)=g(z)S=2π3aRe(1w0tan(πaw0))tan(πw0)=iei2aπw01ei2πaw0+1and2πaiw0=2iπa(12+i32)=π3+iπatan(πw0)=ieiπaeπ3+1eiπaeπ31=ie2π312ieπ3sin(πa)e2π3+12cos(πa)eπ3S=πeπ36a(e2π3+12eπ3cos(πa))Re(3+ish(π3)+isin(πa))S=πe2π312a(ch(π3)cos(πa)×3sh(π3)sin(πa)sh2(π3)+sin2(πa)FinallyS(a)=n=1nn3+a3=π3e2π3(sh(π3)sin(πa))12a(ch(π3)cos(πa))(sh2(π3)+sin2(πa))a>0Letdeduceyourby12S(32).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com