Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105673 by I want to learn more last updated on 30/Jul/20

Answered by mathmax by abdo last updated on 30/Jul/20

A =Σ_(k=1) ^(15) f(k) =Σ_(k=1) ^(15)  arctan((1/(k^2 +k+1))) =Σ_(k=1) ^(15)  arctan(((k+1−k)/(1+k(k+1))))  let k =tanu_k  ⇒((k+1−k)/(1+k(k+1))) =((tan(u_(k+1) )−tanu_k )/(1+tan(u_k )tanu_(k+1) )) =tan(u_(k+1) −u_k )  ⇒arctan(((k+1−k)/(1+k(k+1)))) =u_(k+1) −u_k  ⇒A =Σ_(k=1) ^(15) (u_(k+1) −u_k )  =u_2 −u_1  +u_3 −u_2  +....+u_(16) −u_(15) =u_(16) −u_1 =arctan(16)−arctan(1)  =arctan(16)−arctan(1) ⇒  tanA =tan(arctan(16)−ar4tan(1)) =((16−1)/(1+16×1)) =((15)/(17))  the answer is b

A=k=115f(k)=k=115arctan(1k2+k+1)=k=115arctan(k+1k1+k(k+1))letk=tanukk+1k1+k(k+1)=tan(uk+1)tanuk1+tan(uk)tanuk+1=tan(uk+1uk)arctan(k+1k1+k(k+1))=uk+1ukA=k=115(uk+1uk)=u2u1+u3u2+....+u16u15=u16u1=arctan(16)arctan(1)=arctan(16)arctan(1)tanA=tan(arctan(16)ar4tan(1))=1611+16×1=1517theanswerisb

Commented by I want to learn more last updated on 31/Jul/20

Thanks sir, i appreciate.

Thankssir,iappreciate.

Commented by abdomsup last updated on 31/Jul/20

you are welcome

youarewelcome

Answered by Dwaipayan Shikari last updated on 31/Jul/20

f(x)=tan^(−1) (1/(x^2 +x+1))=tan^(−1) ((x+1−x)/(1+x(x+1)))=tan^(−1) (x+1)−tan^(−1) x  A=Σ_(n=1) ^(15) tan^(−1) (x+1)−tan^(−1) x=tan^(−1) 2−tan^(−1) 1+tan^(−1) 3−tan^(−1) 2+..  A=tan^(−1) 16−tan^(−1) 1=tan^(−1) ((15)/(17))  tanA=((15)/(17))

f(x)=tan11x2+x+1=tan1x+1x1+x(x+1)=tan1(x+1)tan1xA=15n=1tan1(x+1)tan1x=tan12tan11+tan13tan12+..A=tan116tan11=tan11517tanA=1517

Terms of Service

Privacy Policy

Contact: info@tinkutara.com