Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105815 by I want to learn more last updated on 31/Jul/20

Answered by john santu last updated on 01/Aug/20

(dx/dθ) = 1+sin θ ; (dy/dθ) = sin θ  ∫_0 ^(2π)  (√(sin^2 θ+(1+sin θ)^2 )) dθ   ∫_0 ^(2π)  (√(2sin^2 θ+2sin θ+1)) dθ  (√(2 )) ∫_0 ^(2π)  (√(sin^2 θ+sin θ+(1/2))) dθ  (√2) ∫_0 ^(2π)  (√((sin θ+(1/2))^2 +(1/4))) dθ

dxdθ=1+sinθ;dydθ=sinθ2π0sin2θ+(1+sinθ)2dθ2π02sin2θ+2sinθ+1dθ22π0sin2θ+sinθ+12dθ22π0(sinθ+12)2+14dθ

Commented by bemath last updated on 01/Aug/20

let sin θ+(1/2) = t ⇒dx = (dt/(cos θ))  cos θ = (√(4−(2t−1)^2 ))=(√(3−4t^2 +4t))  I=(√2) ∫_(1/2) ^(1/2) (√(t^2 +(1/4))) (√(3−4t^2 +4t )) dt = 0

letsinθ+12=tdx=dtcosθcosθ=4(2t1)2=34t2+4tI=21/21/2t2+1434t2+4tdt=0

Commented by I want to learn more last updated on 01/Aug/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com